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Abstract

We develop a quantity-based framework to study the drivers of U.S. Trea-

sury yields. Our method allows for flexible identification of price and fac-

tor sensitivities for heterogeneous investors in a demand-supply model using

granular idiosyncratic shocks. Overall, a 1 percent demand increase for U.S.

Treasury notes and bonds results in a 1 percent increase in prices, equivalent to

a 10 basis points decline for the ten-year yield. We uncover substantial hetero-

geneity across investors and regimes in sectors’ sensitivity to Treasury yield

changes and aggregate factors. Using the estimated model, we decompose

changes in Treasury yields over the past two decades, and document three

main findings: (i) Contrary to the conventional wisdom, foreign investors con-

tribute little to Treasury price appreciation during flight-to-safety episodes; (ii)

U.S. banks and foreign investors have become more price insensitive follow-

ing the global financial crisis, while the Federal Reserve has stepped up its

role as a state-contingent liquidity provider; (iii) while major foreign Treasury

holders are the biggest contributor to Treasury yield compression before the

financial crisis, the influence of foreign demand on yields has substantially

weakened since 2010.
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1 Introduction

The U.S. Treasury market is the cornerstone of the global financial system. The
overall system’s stability hinges on the market’s capacity to accommodate investor
demand smoothly, and its yields pin down the cost of capital of firms and house-
holds. Unsurprisingly, many macro-financial phenomena of interest—such as the
yield-lowering effects of foreign savings, the consequences of quantitative easing
and tightening, and dynamics during flight-to-safety episodes—center around the
joint dynamics of price and quantities in the Treasury market. The key challenge in
studying such phenomena is the inherent simultaneity between investor holdings
and Treasury yields. For instance, during a flight-to-safety event, yields are influ-
enced not only by how sensitive each investor is to the underlying shock, but also
by how other investors respond and absorb the resulting price pressures.

A model of Treasury demand and supply offers the lens for overcoming such
difficulty. It allows us to determine who responds directly to changes in macro
factors, who accommodates those demand shifts, and ultimately, to quantify the
contributions of each investor to the overall change in yields. However, estimat-
ing such a system is easier said than done. Firstly, understanding macro-financial
phenomena requires estimating the demand and supply for Treasuries as an asset
class relative to other assets. Estimating such aggregate elasticities requires finding
aggregate-level instruments for Treasury yields. Secondly, different institutions
operate under different incentives and constraints, leading to varying sensitivities
to Treasury yields and economic factors. Hence, a flexible methodology is required
to capture these time-varying investor-leve heterogeneities.

To address these difficulties, we develop a quantity-based framework and use it
to study the drivers of U.S. treasury yields over the past two decades. Through the
lens of an equilibrium asset demand and supply system, we quantify the hetero-
geneous sensitivities of different investors to yields as well as macro factors, and
trace the movement in Treasury yields in each period back to different investors.
This approach offers new insights into the Treasury market. We provide the first
direct estimate of the aggregate price elasticity of the Treasury market: a 1% in-
crease in the price of the market portfolio of Treasury bonds lead to a 1% decrease
in aggregate demand from all sectors. We find that there is considerable heteroe-
geneity in investors’ price elasticities, and there have been significant changes in
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these elasticities overtime. Specifically, we document three new facts: (i) contrary
to the conventional wisdom, foreign investors contribute little to Treasury price
appreciation during flight-to-safety episodes; (ii) U.S. banks and foreign investors
becomes more price insensitive after the global financial crisis, while the Federal
Reserve has stepped up its role as a state-contingent liquidity provider; (iii) while
major foreign Treasury holders are the biggest contributor to Treasury yield com-
pression before the financial crisis, the influence of foreign demand on Treasury
yields has substantially weakened since 2010.

We estimate the model using data on quarterly sector-level transactions and
holdings of Treasuries from the Financial Accounts, combined with more granu-
lar Treasury International Capital (TIC) data for foreign Treasury holders and the
Call Reports for banks. Using granular idiosyncratic shocks to other sectors as
the instrument for prices in the spirit of Gabaix and Koijen (2024), we identify
sector-level price and factor sensitivities. We estimate the macro multiplier for the
Treasury market to be 1.0.In terms of yield this means a 1% increase in Treasury
demand would result in a 10 basis point decline in the yield of a 10-year Treasury
note.1 Furthermore, our estimated system reveals substantial heterogeneity in the
price elasticities between different sectors. The household sector, which includes
hedge funds and personal family office investors, is relatively sensitive to changes
in yields, whereas ETFs and pension funds are in general price inelastic.

Our Treasury demand and supply system relates investor’s flows to Treasury
price changes, macro factors, and investor-specific idiosyncratic shocks. The key
identifying variation for price elasticities is from our assumption that idiosyn-
cratic shocks to different investors are mutually independent. As a result, other
investors’ demand and supply shocks constitute relevant and exogenous residual
supply or demand curve shifts from the standpoint of the investor of interest. The
identifying assumption yields a set of cross-equation restrictions that can be han-
dled using the generalized method of moments (GMM). Exploiting the knowledge
of the model structure, we propose a systematic approach to weighting moment
conditions based on investors contribution to prices and informativeness of their
flows. The resulting estimator has many desirable properties. Firstly, it allows for

1Our estimate is smaller than the equity market macro multiplier of 5 (Gabaix and Koijen 2022),
potentially reflecting greater availability of substitutability between fixed-income asset classes
(Chaudhary, Fu, and Li 2023).

2



flexible specifications to handle heterogeneous and time-varying price elasticities.
Secondly, it is easy to implement, and offers transparent and intuitive economic
interpretation. It can be interpreted as a system of jointly estimated instrument-
variable (IV) regressions, or, alternatively, OLS regressions corrected for simul-
taneity bias. Finally, despite its simplicity, our estimator based on this weighting
scheme achieves asymptotic efficiency.

On top of price and factor sensitivity estimation, our framework yields a sim-
ple pricing equation that enables us to inspect various drivers of Treasury yields
through decomposition. Using our estimates, we find that 58% of the observed
yield changes for the past twenty years can be attributed to idiosyncratic demand
shocks, while the remaining 42% are accounted for by observed macro factors and
unobserved Treasury demand common across investors. Going deeper into sector-
specific drivers, we document three key findings. Firstly, contrary to conventional
wisdom, foreign investors are not the main drivers of Treasury yield compression
during flight-to-safety episodes. Rather, domestic investors contribute the most to
Treasury appreciation when global risk sentiment worsens. Secondly, while U.S.
banks have become much less price elastic since 2009, the Federal Reserve has
become an important liquidity supplier after the financial crisis. Finally, foreign
investors’ influence on Treasury yields has waned in the 2010s, marked by a sig-
nificant decline in their market share. Consequently, a foreign Treasury demand
shock of the same dollar amount in recent years would generate a much lower
price impact compare of that before 2010.

Standard explanations for why Treasury bonds appreciate during heightened
periods of risk typically assume that foreigners strongly demand the safety pro-
vided by U.S. Treasuries. Contrary to standard explanations for the “flight-to-
safety” phenomenon, we show that after accounting for the endogenous price re-
sponse, there is no significant evidence that foreign investors increase demand for
U.S. Treasuries when the VIX rises. The main sources of countercyclical demand
for Treasuries is due to the household sector, which includes hedge funds and fam-
ily offices, and the Federal Reserve after 2009. This finding echoes recent literature
documenting the pressure on the Treasury market from a broad-based cash crunch
during the COVID-19 crisis (He, Nagel, and Song 2022; Barone et al. 2022). In ad-
dition, foreign investors’ price elasticity of demand is 55% smaller after 2009 than
before, indicating that these investors themselves are less likely to serve as an im-
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portant price stabilizer during global downturns when other investors liquidate
longer-term Treasury securities for cash.

Our results also shed light on how reduced risk-bearing capacity of U.S. banks
affect the sensitivity of the Treasury market to demand and supply shocks. Follow-
ing the financial crisis and the implementation of various liquidity- and leverage-
based requirements, we find that U.S. banks’ demand for Treasury bonds and notes
becomes less price elastic by 61%, indicating a reduced capacity to accommodate
demand and supply imbalances. From a macro perspective, our finding on U.S.
banks’ demand shift complements the empirical literature exploring the impact of
shifting financial regulatory landscape on bank activities (Du, Tepper, and Verdel-
han 2018; Favara, Infante, and Rezende 2024, among others). Meanwhile, we
show that the Federal Reserve has increasingly acted as a state-contingent liquid-
ity provider. Its responsiveness to VIX surges explains 55% of the overall Treasury
price sensitivity to global risk sentiment fluctuations after 2008. Our finding adds
support to recent theories that highlight the insurance channel of central bank asset
purchases (Haddad, Moreira, and Muir 2024).

Also, we find that while foreign investors were significant drivers of Treasury
yields before the financial crisis, they now play a much smaller role. We find that
demand from foreign holders of the U.S. Treasury, such as China, Japan, and Eu-
ropean countries, led to an average of 74 basis point reduction in Treasury yields
per year from 2003 to 2007. In contrast, these countries have made a small negative
contribution to yields since 2010. During the initial phase of the COVID-19 pan-
demic, foreign investors demanded fewer U.S. Treasuries, flipping the direction of
influence and pushing up yields by 34 basis points. Hence, our findings suggest
that if the largest foreign holders of Treasuries were to sell all their holdings, the
price impact would likely be small.

Overall, our paper suggests that a framework that flexibly incorporating sec-
toral heterogeneity in price and factor elasticities can go a long way in explaining
Treasury market dynamics. The flexibility and efficiency of our estimation proce-
dure also appeals to understanding the demand and supply forces in a wider range
of markets, for which the estimated macro market multiplier of the U.S. Treasury
market – one of the largest and most liquid – could serve as a useful benchmark.
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1.1 Related Literature

This paper contributes to multiple strands of literature. First and foremost, we con-
tribute to the literature studying the heterogeneity of market players and how their
shocks affect Treasury market dynamics. There is extensive literature for each type
of investors, hence it is not possible for us to do full justice here. The literature stud-
ies different constraints and incentives faced by the Federal Reserve (Gagnon et al.
2011a; Haddad, Moreira, and Muir 2024; Krishnamurthy and Vissing-Jorgensen
2011), foreign investors (Jiang, Krishnamurthy, and Lustig 2021; Kekre and Lenel
2024; Tabova and Warnock 2022; He, Nagel, and Song 2022), banks (Jiang, Matvos,
et al. 2024), mutual funds (Selgrad 2023; Huang et al. 2020), insurance companies
(Chaudhary 2024; Koijen and Yogo 2023), and broker-dealers (Du, Hébert, and Li
2022; Vayanos and Vila 2021; Greenwood and Vayanos 2014), and their role in the
Treasury market. Our primary contribution is to study the interactions of all Trea-
sury market participants and their impact on equilibrium yields. In particular, we
contribute to the literature on foreign special demand for Treasuries by providing
novel evidence that shows foreign investors’ contribution to flight-to-safety price
pressure is relatively small and has further weakened in the recent decade. We also
speak to the literature on quantitative easing by quantifying the impact of Federal
Reserve’s state-contingent liquidity provision. Also our finding that banks are less
willing to provide liquidity to the Treasury market since the financial crisis speaks
to the broader literature documenting the changing nature of bank intermediation
and its broader market implications since 2008.

More closely related to our approach is the burgeoning literature on using
demand-based frameworks to study asset prices.2 We provide the first direct macro
elasticity estimate for the U.S. Treasury market covering all market participants.3

The idea that the demand shocks move Treasury prices is not new, and has long
been acknowledged in the literature (Greenwood and Vayanos 2010; Krishnamurthy

2The recent development in the demand-based framework, pioneered by Koijen and Yogo
(2019), has been widely adopted and applied to many asset classes, including equity (Gabaix and
Koijen 2022), corporate bonds (Chaudhary, Fu, and Li 2023), foreign exchange rates (Camanho,
Hau, and Rey 2022; Jiang, Richmond, and Zhang 2022; An and Huber 2024) and generated numer-
ous new insights that is unavailable to frameworks that only focuses on prices.

3The literature on estimating macro multipliers of the equity market has been growing rapidly.
See, for example, Da et al. (2018), van der Beck (2022), Hartzmark and Solomon (2022), Haddad,
Huebner, and Loualiche (2024), and Li, Pearson, and Zhang (2024), most of which point to a smaller
aggregate elasticity compared to our estimate on the U.S. Treasury market.
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and Vissing-Jorgensen 2012; Hanson and Stein 2015). The success of the quantita-
tive easing policies further adds support to this view. Nevertheless, it has been
challenging to quantify the elasticity and the multiplier, as identification has been
proven difficult in a highly liquid market such as U.S. Treasury. With recent ad-
vances in the model framework and identification techniques, an expanding set of
papers have applied the demand system approach to understanding the demand
for government debt (Fang, Hardy, and Lewis 2022; Cavaleri 2023; Eren, Schrimpf,
and Xia 2023; Jansen, Li, and Schmid 2024). Another set of papers jointly study the
demand for government debt along with other asset classes (Jiang, Richmond, and
Zhang 2024; Koijen and Yogo 2024). Our paper builds on these works and fur-
ther develops a more flexible asset demand system. By leveraging the new model
framework and identification method, we are able to directly estimate investor-
specific and time-varying price elasticities and macro factor loadings for every in-
vestor.4 Our estimated model can fully recover the time path of the Treasury yields,
allowing us to decompose and quantify changes in Treasury yields in each quarter
into the sector- and factor-specific drivers.

More generally, our approach extends the granular instrumental variable liter-
ature (Gabaix and Koijen 2024) to a setup with full cross-sectional heterogeneity
in price and factor elasticities. The GIV method has been broadly applied in the
macro-finance literature to study various topics (see, for example, Kundu and Vats
(2021), Chodorow-Reich et al. (2024), Adrian et al. (2022), and Camanho, Hau, and
Rey (2022)). Several extensions to the original methods have also been proposed
in the literature to allow for more general specifications: Qian (2024) proposes
the heterogeneity-robust GIV (RGIV), which relies on the continuously updating
GMM estimator to search for the optimal weighting. Baumeister and Hamilton
(2023) propose a maximum likelihood (MLE) approach to the GIV. Compared to
these more statistically driven approaches, our method leverages the economics of
the model to propose a weighting scheme that achieves optimal efficiency of the
estimator. Chodorow-Reich et al. (2024) studies empirical identification of shock
propagation through a network. Our method builds on the insights of Chodorow-
Reich et al. (2024), but further develop the optimal estimator in the case where the

4The idea that granular demand shocks from other sectors form residual supply curve shifts that
help identify price elasticity of demand in the bond market is also explored in Lou (2012), Koijen,
Koulischer, et al. (2017), Jansen (2021), and Zhou (2023), among others. We provide a systematic
approach to extract this type of shocks.
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network effect operates through heterogeneous responses to endogenous factors.

1.2 Roadmap

The paper is organized in five sections. Section 2 introduces the linear asset de-
mand and supply system and our identification approach. Section 3 reports our
estimate of the Treasury macro market multiplier and the associated sector-specific
price elasticities. Section 4 discusses in depth the results from decomposing Trea-
sury yield changes using the estimated system. Section 5 concludes.

2 Methodology

In this section, we propose a model framework to study the Treasury market and
develop an identification strategy in the spirit of the granular instrument variable
(GIV, Gabaix and Koijen 2024). The framework is sufficiently flexible to accommo-
date investor heterogeneity and can be applied to any asset markets with investor-
or sector-level holding data.

2.1 Model Framework

Notations Throughout the text, we use bold symbols to denote vectors or matri-
ces, and regular symbols to denote the scalars. For example, qt is a vector with
qi,t being its i-th entry. For the ease of notation, we also introduce the subscript S
to denote size-weighted aggregation, such that qS,t ≡ S′qt =

∑
i Siqi,t. Similar ag-

gregation notations are also defined for other weighting matrices throughout the
text.

For the ease of exposition, we start with a simple case with constant price elas-
ticity and factor loadings across time. In this case, asset demand of entity i is
specified as follows:

qi,t = −ζipt + λiηt + ui,t.

To be concrete, we can consider qi,t to be the percent change in holdings of Treasury
bonds by investor i at time t, pt be the percent change of the aggregate Treasury
price, ζi be the elasticity of investor i, λi be the loading on common factors ηt,
such as monetary policy shocks or the uncertainty index, which are assumed to be
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observable for the simple model. This assumption will be relaxed later. Finally, ui,t
denotes the idiosyncratic shocks associated with investor i. For now we assume all
the random variables have zero means for simplicity.

Market clears in each period. The net flow in the total market, including supply,
would sum to zero. As qi,t is used to denote the entity-i flow as a percentage of the
total holdings, we scale it by their respective size Si to arrive at the market clearing
condition: ∑

i

Siqi,t = 0.

The price adjusts to clear the market:

pt =
1

ζS
(λSηt + uS,t) . (2.1)

According to Equation (2.1), the Treasury price (or more accurately, the price change)
is determined by aggregate demand shocks, scaled by inverse elasticities. The
aggregate demand shocks can come from two sources: the common components
λSηt, and aggregates idiosyncratic shocks uS,t. The inverse of the aggregate elas-
ticity, 1

ζS
, captures the price impact of one unit of demand shocks on the price. We

also refer to the inverse elasticity, 1
ζS

as the market multiplier.
In the more general model to be discussed in Section 2.4, we allow for more

flexible specifications: the elasticities ζi can be entity-specific or shared across in-
vestor groups; they can also be regime-specific or parameterized as functions of
macro factors. The model can also accommodate time-varying sizes, or no size
weighting at all—as we will discuss later, our methodology does not rely on the
fat-tail distribution in sizes. Below we illustrate the methodology using the simple
model introduced above, and the intuition from the simple model carries over to
the full model.

In the data, we observe the time series of the quantities held qi,t, price pt and
common factors ηt. Given this model framework and the parameter estimates, we
will be able to back out the idiosyncratic shock ui,t and use them to decompose the
price movement to different investors. We now discuss model estimation.
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2.2 Identification

2.2.1 Identification of Factor Loadings λi: the “Missing Intercept” Problem

For many research questions, researchers are not interested in the elasticities per
se, but more in the loadings on the common factors by different entities λi. For ex-
ample, a researcher may want to understand the heterogeneous responses of asset
demand to monetary policy shocks. In those cases, a crude estimate for λi would
be the regression coefficients of quantities held on monetary policy shocks, possi-
bly controlling for other observed factors but excluding the asset price. However,
without an estimate of the elasticity ζi, this simple approach will only recover the
difference in loadings between the investor and the aggregate market, but not the
true level of the responsiveness.

To see the issue in more detail, consider the case with a single factor, say mon-
etary policy shocks. In this case, the direct, OLS estimate of asset demand loading
on monetary shocks, λqi , is given by:

λqi ≡
E [qi,tηt]

E [η2t ]
=

E [(−ζipt + λiηt) ηt]

E [η2t ]
= λi −

ζi
ζS
λS. (2.2)

This equation makes it clear that the estimated coefficient will be downward biased
with the bias given by the market average loading multiplied by entity i’s price
elasticity relative to the market. Hence, observing asset sales from an investor after
monetary tightening (λqi < 0) does not necessarily imply that their demand shifts
downwards after surprise monetary policy tightening. If all price elasticities have
the same sign, we can only infer their demand is lower than than the market av-
erage (λi < λS). Without knowing the price elasticities and the aggregate loading,
however, we cannot determine the sign of the true demand loading λi. This is-
sue reflects the “missing intercept” problem commonly faced in macroeconomics:
when making inference using micro data, the general equilibrium effects are dif-
ferenced out in the cross-section. Here the equilibrium asset price is the intercept
that is omitted from the analysis.

Therefore, to correctly identify the factor loadings λi, we need consistent esti-
mates for the price elasticity ζi. To proceed, we follow the following three steps:

1. We regress pt and qi,t on ηt to obtain the residual pεt and qεi,t, and we also
denote the coefficients as λ̂

q

i and λ̂
p

i ;
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2. We estimate elasticities ζ using residuals pεt and qεi,t as discussed in the next
section

3. We then construct the estimators for λi as:

λ̂i = λ̂qi + ζ̂iλ̂
p.

In Appendix A.2, we discuss the asymptotic properties of this three-step proce-
dure. Despite the multi-step feature of this estimation method, no adjustment is
needed for the asymptotic variance for ζ̂ . We also derive the asymptotic variance
for loading estimators λ̂i in the Appendix.

2.2.2 Identification of Price Elasticities

As discussed at the end of the previous subsection, we first regress qi,t and pi,t on
common factors ηt and work with the residuals orthogonal to the common factors.
Therefore, in this subsection, we proceed as if there is no common factor for the
ease of exposition.

The key challenge in identifying elasticities is that price pt is endogenous to
demand shocks ui,t: the idiosyncratic shocks to a sector moves the price through
the market clearing. Instruments for prices are needed for identification. However,
for many highly liquid markets such as US treasuries, external instruments for
prices that can be used for all type of investors with satisfactory statistical power
may not exist. Inspired by the insight of granular instrument variables, that the
shocks specific to each investor ui,t are often highly idiosyncratic and orthogonal
to each other (Gabaix and Koijen 2024), we use our demand and supply system to
systematically extract instruments for each investor group. Formally, we make the
following identifying assumption:

Assumption 1. ui,t is independent from uj,t for any i ̸= j.

Economically, this assumption states that investor i’s trading, conditional on
prices and macro factors, is unrelated to the asset demand shifts of other investors.
In the real world, due to the large heterogeneity across different types of investors
in terms of beliefs and institutional frictions, investors’ trading motives can be
highly idiosyncratic with little connection with others, and hence “idiosyncratic”.
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For example, foreign countries’ selling Treasuries may be driven solely by their
domestic concerns and unrelated to U.S. pension funds’ demand. 5

A potential threat to identification is that after controlling for observed com-
mon factors, there are still residual covariance across the idiosyncratic shocks due
to unobserved factor structures. Such concerns can be addressed using methods
such as principal component analysis (PCA) to extract further unobserved com-
mon factors to test the robustness of the assumption. We discuss handling of the
unobserved factors at the end of this section.

Econometrically, Assumption 1 implies moment conditions by orthogonality:

E [ui,tuj,t] ≡ E [(qi,t + ζipt) (qj,t + ζjpt)] = 0. (2.3)

In the data, we do not directly observe the idiosyncratic shocks ui,t , but for a
given candidate estimator, z, we can form the sample moment condition:

Ê [ûi,t (zi) ûj,t (zi)] ≡ Ê [(qi,t + zipt) (qj,t + zjpt)] = 0.

Denote the number of investors asN , (2.3) covers the whole off-diagonal matrix
of ui,t and implies a total of N × (N − 1)/2 moment conditions to identify at most
N parameters if we allow for full heterogeneity in elasticities. The elasticities are
over-identified: we in fact have too many rather than too few moment conditions.
With a sufficiently long panel, we can estimate the system using the generalized
method of moments (GMM) with two-step or iterative schemes to obtain the op-
timal weighting matrix. Nevertheless, in practice, we typically have many more
moment conditions N × (N − 1) /2 than time periods T , and it is a known problem
that the standard methods to weigh the moment conditions behave poorly in this
scenario (Newey and Windmeijer 2009; Han and Phillips 2006).

Guided by the economics behind the model framework, we derive the optimal
weighting for moment conditions in (2.3).6 We refer to the corresponding estimator

5This assumption also assumes one investor’s demand cannot be a function of other investors’
contemporaneous shocks. In this way, we rule out the possibility that some investors possess and
can act quickly on their information advantages. If one is able to identify such investors in the data,
our approach allows to exclude these investors in the construction of the moment conditions for
optimal GIV. We show later that while broker-dealers could act on clients’ idiosyncratic shocks by
learning from the trading patterns, excluding broker-dealers (or any other sector for this purpose)
from the estimation do not materially affect our quantitative estimates.

6In other words, we identify a one-step GMM estimator that directly achieves the efficiency
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as the optimal GIV estimator. In the simple framework discussed in this section, it
turns out that the optimal GIV estimator prescribes a very simple and intuitive
weighting scheme:

Definition 1. The optimal GIV estimator ζ̂ solves the following sample moment
conditions (Ê denotes the sample mean across the time dimension):

Ê

ûi,t
(
ζ̂i

)∑
j ̸=i

Sj,tuj,t

(
ζ̂j

)
︸ ︷︷ ︸

ûS(−i),t(ζ̂)

 ≡ Ê

[(
qi,t + ζ̂ipt

)∑
j ̸=i

Sj

(
qj,t + ζ̂jpt

)]
= 0. (2.4)

That is, to estimate the elasticity for the entity i, we weigh other entities’ idiosyn-
cratic shocks using their sizes—their respective contributions to price changes.

This estimator is optimal in the sense that it is asymptotic efficienct, formally
stated in the proposition below:

Theorem 1 (Asymptotic efficiency). Given the moment conditions (2.3), Under regu-
larity conditions,7 the optimal GIV estimator ζ̂ is consistent and asymptotically normal:

√
T
(
ζ̂ − ζ

)
d→ N

(
0,Vζ

)
,

for T → ∞. Moreover, its asymptotic variance achieves the semi-parametric efficiency
bound (Chamberlain 1987), given as

Vζ = ζ2S×Inv





1
σ2
1

∑
i ̸=1 S

2
i σ

2
i S1S2 S1S3 · · · S1SN

S1S2
1
σ2
2

∑
i ̸=2 S

2
i σ

2
i S2S3 · · · S2SN

S1S3 S2S3
1
σ2
3

∑
i ̸=3 S

2
i σ

2
i · · · S3SN

...
...

... . . . ...
S1SN S2SN S3SN . . . 1

σ2
N

∑
i ̸=N S

2
Nσ

2
N




,

(2.5)
where ζS ≡

∑
i Siζi is the aggregate elasticity and σ2

i ≡ var(ui,t)
2.

Proof. See Appendix A.

bound.
7See Appendix A for the exact conditions required.
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Remark. The expression (2.5) illustrates the sources of the statistical power of the
optimal GIV. First, the standard error of each individual elasticity ζi is scaled by ζS
– the aggregate elasticity –but not their own. In the extreme case where the mar-
ket is perfectly elastic, granular idiosyncratic shocks are not able to move market
price at all, making the instruments irrelevant and the standard errors blow up;
second, the statistical power depends on the ratio of other sectors’ size-weighted
volatility,

∑
j ̸=i S

2
j σ

2
j to its own residual volatility σ2

i . The larger is the volatility in
the rest of the market, the larger is the variations in the price that is exogenous to
entity i that we can exploit. In the extreme case where

∑
j ̸=i S

2
j σ

2
j → 0, there is no

exogenous residual supply curve shifts facing investor i, whose price elasticity is
not identified.

Below we offer two sets of intuitions that shed light on the mechanics of the op-
timal GIV estimator and show why the simple size-weighting scheme is optimal.

Instrument-variable interpretation This estimator has a natural instrumental vari-
able interpretation: For each entity i, the moment condition can be rewritten as:

ζ̂i = −
Ê
[
qi,tûS(−i),t

(
ζ̂
)]

Ê
[
ptûS(−i),t

(
ζ̂
)] .

That is, taking the elasticity for other entities as given, this moment condition uses
other entities’ idiosyncratic shocks as the instrument for the price when estimat-
ing entity i’s elasticity. Maximizing the power in IV regressions requires maxi-
mum instrument relevance, i.e., the covariance between price and the instrument.
The market clearing condition of our model implies that price is an affine function
of the size-weighted aggregation of idiosyncratic shocks, so that size weighting
achieves maximal relevance.

Debiased-OLS interpretation If the entity is infinitesimal so that its idiosyncratic
shocks do not move the price, we can simply regress qi,t on pt to estimate its elastic-
ity using OLS, and the Gauss–Markov theorem would guarantee that OLS yields
the efficient estimator. However, when entities are granular, OLS is biased, as in-
vestors’ trading moves the price against them. An ideal estimator would exploit
the efficiency in OLS while correcting the biases. This is exactly what the optimal
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GIV does.. Lemma 1 formally shows that the optimal GIV estimator corrects for
the bias arising from OLS estimation.

Lemma 1 (Debiased-OLS moment conditions). When the whole market is observed
so that the market clearing condition

∑
i Siqi,t = 0 holds in sample for every period, the

optimal GIV estimator is equivalent to the estimator that solves:

ζ̂i = − Ê [qipt]

Ê [p2t ]− 1

ζ̂S
Siσ̂2

i

(2.6)

where σ̂2
i ≡ Ê

[
ûi

(
ζ̂i

)2]
is the sample variance of the idiosyncratic shocks.

Proof. Using the market clearing condition, we have:∑
j ̸=i

Sj,t

(
qj,t + ζ̂jpt

)
= ζ̂Spt − Siûi

(
ζ̂i

)
.

Plug it into the sample moment condition (2.4) and rearrange, we have the sample
moment conditions (2.6).

Lemma 1 states that the optimal estimator can be equivalently implemented
by regressing quantities on prices and adjusting for the bias—their own impact
on prices 1

ζ̂S
Siσ̂

2
i . In addition to the OLS interpretation, Lemma 1 also offers an

alternative, and sometimes more stable, algorithm for estimating the model.8

Unobserved common factors Failing to control for common factors will lead to
a violation of Assumption 1. In particular, some common factors may not be ob-
served directly by econometrician. To avoid common factors contaminating the
identification, one idea is to use principal component analysis (PCA) to extract
unobserved common factors, and use the residuals to identify the elasticities.

One potential complication is that, as pointed out by Qian (2024), with unob-
served common factors and fully flexible elasticity specifications, ζ is not uniquely
identified. The key intuition is that the price itself is essentially another (endoge-
nous) factor, and alternative values of the price elasticity, combined with appropri-
ate values of loadings on the unobserved common factors could also fit the data.

8A Julia package for estimating optimal GIV in its alpha stage is available upon request.
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We offer two solutions to this issue, one nonparametric and the other para-
metric. First, suppose we observe a sector of similar entities. If within the sector
the elasticity is homogeneous, then we can demean entities within this sector pe-
riod by period to remove the influence of pt. Then we can use PCA to extract the
unobserved common factors from the demeaned data. This is the nonparametric
approach. Second, we can alternatively parameterize the factor loadings as a linear
function of characteristics of each entity, i.e.,

λi,tηt =X
′
i,tλ̇ηt,

in which case the factors can be controlled for using characteristics with time-
specific coefficients.

Measurement Errors The quantity data can be noisy in real world applications.
The quantity observed by the econometrician may be contaminated by the addi-
tional measurement errors:

q̃i,t = qi,t + εi,t,

where εi,t only enters the observed q̃i,t but not the real qi,t and hence not the pricing
equation (2.1).

If the measurement errors are classic, i.e., it is independent with prices, common
factors and each other, then the optimal GIV estimator is still consistent, as the
moment conditions in (2.3) still holds with additional orthogonal terms εi,t. The
size-weighting scheme, however, will no longer be optimal except for the special
case where var (εi,t) ∝ var(ui,t).

Nevertheless, the existence of a residual sector may break the consistency of the
estimator under classic measurement errors. A residual sector is a sector that is not
directly observed in the data, but backed out from the market clearing condition.
In real world applications, we typically do not observe the direct report of the
holdings and flows from every market participant. For example, the household
sector in the Flow of Funds data is a residual sector imputed using market clearing.

After imposing market clearing, measurement errors in the observed data will
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negatively enter the quantity for the residual sector r:

q̃r,t ≡ − 1

Sr

∑
i ̸=r

Siq̃i,t = qr,t −
1

Sr

∑
i ̸=r

Siεi,t.

In this case, moment conditions between the residual sector r and other sectors
with measurement errors may no longer hold, as the measurement errors lead to a
negative covariance:

E

[(
ur,t −

1

Sr

∑
i ̸=r

Siεi,t

)
(ui,t + εi,t)

]
= −Si

Sr
σ2
i,ε.

If one is not interested in the aggregate market elasticity, one can simply exclude
the residual sector form the estimation. If there exist investors free from measure-
ment errors (σi,ε = 0), then the elasticity for the residual sector can also be consis-
tently estimated by only including sectors without measurement errors.

2.3 Comparison with the Standard GIV

The size-weighting scheme proposed above may look reminiscent to readers who
are familiar with the original GIV method proposed in the seminal paper of Gabaix
and Koijen (2024). In this section we discuss the relationship of our approach to the
method introduced in Gabaix and Koijen (2024), hereafter referred to as the stan-
dard GIV. This section can be skipped without compromising the understanding
of our results in the following sections.

On top of the assumptions above, the standard GIV further imposes homo-
geneity in elasticities across entities.9 To closely compare two estimators, we also
consider the case with homogeneous elasticity so that ζi ≡ ζ , and we also consider
the case where the size vector sums to 1,

∑
i Si = 1.

With homogeneity, the optimal GIV estimator pools the sample moment condi-
tions (2.4) across i weighted by the inverse of residual variance (σ2

i )
−1 (the details

are discussed in the next section 2.4), so that the optimal GIV estimator ζOG corre-

9Gabaix and Koijen (2024) also offer a method to handle heterogeneity in the online appendix,
which is further developed by Chodorow-Reich et al. (2024). Here the standard GIV refers to the
case with homogeneity introduced in the main text of Gabaix and Koijen (2024).
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sponds to the following moment conditions in population:

∑
i

(σ2
i )

−1

Σi(σ2
i )

−1
E

[(
qi,t + ζOGIV pt

)∑
j ̸=i

Sj
(
qj,t + ζOGIV pt

)]
= 0

Denote the Σu = diag (σ2
1, σ

2
2, . . . , σ

2
N) as the covariance matrix of the residual

variance, and Ei ≡ (σ2
i )

−1

tr(Σ−1
u )

as the weights using the inverse of the residual volatil-
ity, we can consolidate the corresponding moment conditions above in the matrix
form:

E′E
[(
qt + ιζ

OGIV pt
) (

qt + ιζ
OGIV pt

)′]
S = E′ΣuS =

1

tr(Σ−1
u )
ι. (Optimal-GIV)

Notice that this is a quadratic equation in ζOGIV and has to be solved nonlin-
early.

The key insight in the standard GIV is that, with homogeneous elasticities,
cross-sectional demeaning can eliminate the endogenous term ζpt. Mathemati-
cally, for any vector that sums to 1, X′ι = 1, we also have E′ΣuX = 1

tr(Σ−1
u )
ι, so by

taking the difference of these two equations, we have:

E′E
[(
qt + ιζ

SGIV pt
) (

qt + ιζ
SGIV pt

)′]
(S−X) = 0, (Standard-GIV)

where S −X essentially demeans qt in the cross section. Move weighting vectors
into the expectation operator, this weighting scheme can be further expressed as in
terms of weighted average of q:

E
[(
qE,t + ζSGIV pt

)
(qS,t − qX,t)

]
= 0.

Importantly, the term ζpt drops out from the second term in the expectation due
to differencing. As it is linear in ζ , it now be implemented with an IV regression of
precision-weighted quantity (qE,t) on pt, using qS,t− qX,t as the instrument. Gabaix
and Koijen (2024) further show that within this class of the linear estimators, set-
ting X = E achieves the highest statistical power, and hence the recommended
instrument is the size-minus-precision weighted q.

At first glance, the mathematical difference between the standard GIV and the
optimal GIV in the simplest case is merely whether to demean qi,t in the cross
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section. This subtle difference nevertheless has an important implication on the
statistical power in a sample where the distribution of the contribution to price
changes across entities does not exhibit a large fat tail.

To see the power comparison, consider a simpler case with homoskedasticity,
i.e., σi ≡ σ. In this case, the asymptotic variance of the optimal GIV estimator has
a simple expression: 10

√
T
(
ζ̂OGIV − ζ

)
d→ N

(
0,VOGIV

ζ =
ζ2

(N − 2)
∑

i S
2
i + 1

)
,

while the standard GIV converges to a different limiting distribution: 11

√
T
(
ζ̂SGIV − ζ

)
d→ N

(
0,VSGIV

ζ =
ζ2

N
∑

i S
2
i − 1

)
.

We can show that VOGIV
ζ > VSGIV

ζ . More importantly, the crucial difference is
that the standard GIV relies on the fat-tail distribution in Si for statistical power,
while the optimal GIV does not. This is because when sizes are equally distributed
(Si =

1
N
), the size weighting and precision weighting (which is equal weighting in

the case of homoskedasticity) coincides, so the standard GIV’s instrument has zero
variation after demeaning. This is not the case in the optimal GIV, whose statistical
power still grows at the rate of

√
T .

This power comparison is not only theoretical but is also relevant practically.
While fat-tail distribution in sizes is prevalent in real-world data, the residual
volatility typically shrinks as an entity becomes larger. As shown in the expres-
sions in (A.6), what matters for the statistical power is not only the size distribu-
tion but the the distribution of each entity’s contribution to price volatility, i.e., the
size-weighted volatility, S2

i σ
2
i . To see that, consider the case where the size has a

fat tail distribution but the residual volatility is inversely proportional to the size,
σi ∝ 1

Si
. In this case, the size vector again coincide with the precision weighting,

and there is no variation in the size-minus-precision instruments. Figure B.1 in the
Appendix compares the power of the standard GIV and the optimal GIV estima-
tor in simulations. With parameters calibrated to the Treasury market in the real
world data, we find that the optimal GIV is twice as powerful as the standard GIV.

10See the Appendix A for the derivation.
11See Gabaix and Koijen (2024) for the derivation.
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2.4 General Framework

After illustrating the main idea using the simple model framework above, we in-
troduce the more flexible model. The general model is specified as follows:

qi,t = −pt ×C′
i,tζ +X′

i,tβ + ui,t,

0 =
∑

i Si,tqi,t

}
=⇒ pt =

1

C′
S,tζ

[
X′
S,tβ + uS,t

]
,

which allows for the following flexibility:

• The elasticity is parameterized by the matrix Ci,t, which can be entity-specific
and time-varying;

• The control variable Xi,t can also also be entity&time-specific;

• The size vector Si,t is also allowed to be time-varying; we also do not require
it to sum to 1.

The simple model can be recovered from the general specification by setting Ci,t to
be the entity fixed effects, and Xi,t to be the interaction of entity fixed effects with
the aggregate factors ηt.

The moment conditions used to identify the elasticity vector ζ remain the same
as before, only it is now conditional on all other exogenous variables (ηt,Ct, St):

E [ui,tuj,t | Xt,Ct,St] = 0. (2.7)

We again follow the three-step procedures outlined in 2.2.1 to strip away the
influence of control variables Xi,t, and then form the optimal GIV estimator for
ζ using the residuals qεi,t and pεt . We provide the optimal GIV estimator and its
asymptotic properties below, and refer readers to Appendix A for the derivation.

Definition 2. Letψt (z) be a vector of length N(N−1)
2

with subscript ij (i ̸= j) denote
the row corresponding the entity pair (i, j) :

ψij,t(z) ≡ ûit (z) ûjt (z) ≡
(
qεi,t + pεtC

′
i,tz
) (
qεj,t + pεtC

′
j,tz
)
.

Denote Vψ ≡ E
[
ψt (ζ)ψt (ζ)

′] = Diag
(
σ2
1σ

2
2, σ

2
1σ

2
3, . . . , σ

2
N−1σ

2
N

)
. Denote Ŵ∗

t (z) as
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weighting matrix of the size N(N−1)
2

×Nζ such that

Ŵ ∗
ij,k,t (z) =

1

C′
S,tz

(
SjtCit,k
σ̂2
i (z)

+
SitCjt,k
σ̂2
j (z)

)
,

where σ̂2
i (z) ≡ Ê

[
ûit (z)

2]. The optimal GIV estimator ζ̂ for the general model
solves the following sample moment conditions:

Ê
[
Ŵ ∗
t

(
ζ̂
)′
ψt

(
ζ̂
)]

= 0.

Similar to the simple model, we show the optimal GIV estimator in this case is
also asymptotically efficient:

Theorem 2 (Asymptotic efficiency in the general model). Given the moment condi-
tions (2.7), Under regularity conditions12, the optimal GIV estimator ζ̂ is consistent and
asymptotically normal: √

T
(
ζ̂ − ζ

)
d→ N

(
0,Vζ

)
,

for T → ∞, where
Vζ =

(
E
[
W∗′VψW∗])−1

.

Moreover, Vζ achieves the semi-parametric efficiency bound.

Proof. See Appendix A.

3 Estimation

3.1 Model Specification and Data

Using the estimation method introduced in Section 2, we estimate a demand sys-
tem for the Treasury market, specified as follows:

fi,t = −ζi,r(t)pt + λi,r(t)ηt + f̄i + ui,t∑
i Sifi,t = 0

}
=⇒ pt =

1

ζS,r(t)

[
λS,r(t)ηt + f̄S + uS,t

]
.

(3.1)

12See Appendix for the exact conditions
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Below we explain the meaning of each terms and the relevant data sources. For
a detailed description of data construction, see Appendix C.1.

Flows and positions We focus on medium-to-long term U.S. Treasury notes and
bonds (Treasury bonds hereafter for simplicity). To capture the holdings and trans-
actions of Treasury bonds, we rely on the Financial Accounts of the United States
(also referred to as Flow of Funds), compiled by and retrieved from the Federal Re-
serve Board. The Financial Accounts report the level of holdings and transactions
of Treasury securities at the sectoral level, such as mutual funds, banks, etc. We ex-
clude holdings and flows of Treasury bills whenever possible.13 The transactions
are designed to only capture the exchange of the assets, and hence the “flows”,
but not the changes due to asset revaluation. The market clearing condition are
respected in the flow data such that total dollar flows in one quarter sums to zero
across all sectors (including net issuance):

∑
i

Fi,t = 0. (3.2)

One special sector in the Financial Accounts is the household sector. As there
is no direct measurement of the total assets held by household sector in the U.S.,
Financial Accounts data compute household sector holding from the market clear-
ing condition (3.2) above by taking the residuals. As a result, the household sector
is a catch-all sector for all investors that are not included and observed in other
sectors. These investors include hedge funds, endowment funds and family of-
fices. While we refer to them as the household sector following the labeling of the
Financial Accounts, the sector should be interpreted more broadly.14

For two sectors in the Financial Accounts, we further break them down to a
more granular level: For U.S.-chartered depository institutions (banks), we use
individual bank holding of Treasury securities derived from Call Reports.15 For

13In the Financial Accounts, not all sectors report separately Treasury bills and and notes&bonds.
In those cases, we use the total flows and positions in all Treasury securities including bills. See
Appendix C.1 for our treatment in more detail.

14Following the discussion on measurement errors in Section 2, to avoid spurious correlations,
we only use moment conditions between the household sector (the residual sector) and sectors
with accurate reporting, such as the Fed, supply, banks, etc. In Appendix Table C.3 we also report
estimation results without using the household sector, and the estimates for other sectors are largely
consistent with the baseline specification, suggesting the measurement error is not a major concern.

15We follow a similar procedure, used by Jansen, Li, and Schmid (2024) and documented in Ap-
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foreign investors (RoW), we use Treasury International Capital (TIC) to further
break it down to the country level.

We estimate the model at the quarterly frequency. Our baseline sample spans
from 2003Q4 to 2023Q4. In Appendix Table C.3, we also report the estimates using
only the Financial Accounts to extend the sample back to 1970Q1. Though with a
large time-span, the elasticity estimates are highly stable.

Figure 1b provides a bird’s-eye view of the holdings (in market values when-
ever possible) and dollar flows by different groups of investors reported in the
Financial Accounts in this century. The total Treasury notes and bonds outstand-
ing increased from less than $5 trillion to more than $ 20 trillion at the end of 2023,
or from around 30% percent of GDP to 70%.16 Given the drastic shift in the debt
to GDP ratio over the sample period, 1% increase in debt-to-GDP in 2023 has very
different implication than that in 2008. Hence in this paper, we opt to use the total
outstanding market value to normalize flows, as discussed below.

pendix C.1, to impute Treasury holdings from Treasury and agency holdings of individual banks.
16Total Federal debt-to-GDP ratio is around 120% at the end of 2023, comprised of Treasury notes

and bonds, bills and non-marketable Treasury securities.
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Figure 1: Holdings and Flows: U.S. Treasury Notes & Bonds

(a) Total holdings by group
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Note: Figure 1 plots the total holding of U.S. Treasury notes and bonds by investor groups (panel
(a)) and groups the flows (net transactions as percentage of the total market size) by investor groups
and episodes. We aggregate investor sectors reported in Financial Account (Z.1) to four investor
categories and one issuer sector (“supply”), the exact mapping available in Appendix C.1. In Panel
(b), the sign of the flows are inverted, so that a higher position corresponds to a upward pressure
on Treasury yields.

The flow measure fi,t is defined as the net dollar flows Fi,t by investor i, nor-
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malized by their market share Si times the total market values of Treasury bonds
outstanding in the last quarter Atotalt−1 :

fi,t ≡
Fi,t

SiAtotalt−1

.

We use the constant market share Si in the baseline specifications, defined as the
average market share of each entity throughout the sample period:17

Si =
|
∑

tAi,t|∑
tA

total
t

.

Supply enters the system as negative demand. We choose the sign convention such
that Si are always positive, and fi,t follows the sign of the dollar flows Fi,t, with
positive numbers indicating net buying and negative numbers indicating net sell-
ing. For example, in 2023Q4, Department of the Treasury issued $876.5 billion of
Treasury bonds, and the total outstanding bonds by the end of 2023Q3 is $20370.8

billion, so the supply flow in Q4 is fsupply,2023Q4 =
−$876.5
$20370.8

= −4.3%. In this way, the
supply and demand can be treated uniformly in this framework: a positive ζsupply
means when the Treasury price is higher, supply tends to increase.

Price and Elasticity For price pt, we use the quarter-on-quarter percent change in
the price of the market portfolio of Treasury notes and bonds with maturity longer
than 1. The data is downloaded from CRSP US Treasury Database. Figure 2a plots
the path of average yields (the left axis) and the average duration (the right axis)
of the market portfolio. The average duration over the sample period is around
6 years. Figure 2b plots the quarterly changes in the price of the market portfo-
lio. We flip the sign of the y-axis so that an increase in the yield corresponds to a
higher position in the figure. We also mark on the right axis the the correspond-
ing changes in average yields. As coupon and principal payments are fixed, the
change in prices is closely tied to the return to the market portfolio. The time series

17The choice of using constant size weighting is to address the following concerns: Some sectors,
such as households and security brokers and dealers, have very volatile net positions, and have
close-to-zero net positions for several periods. However, as their gross long and short positions
are much larger, using their real-time net positions as their sizes will not properly capture their
influence in the market. Using constant size weighting avoids such issues. With constant size
weighting, flows can be interpreted as the change in demand as a percentage of the total market
outstanding, scaled by a constant Si.
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exhibit stationarity and close to zero autocorrelation.

Figure 2: The path of average yields on U.S. Treasury notes and bonds

(a) The time series of average yields and duration
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(b) Price change in the market portfolio
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Note: Figure 2 plots the path of average yield, duration and price change in the market portfolio
of U.S. Treasury bonds and notes from 2004 to 2023. All three objects are aggregated from CRSP
from the security level weighted by amount outstanding. In Panel (b), the left y-axis corresponds
to price change while the right y-axis corresponds to yield change, defined as price change scaled
by average duration.

We allow different investors to have different price elasticities. In principle,
our method allows for full heterogeneity in elasticities. For estimation efficiency
and interpretability, we bin smaller investors into groups by their characteristics
and estimate an homogeneous elasticity for each group. For example, all banks are
assumed to have the same elasticity, and all types of pension funds are binned into
one group as well. The detailed mapping from sectors to groups can be found in
Appendix Table C.1.

As the U.S. financial market has undergone a regime shift after the global fi-
nancial crisis, many sectors may behave differently before and after the crisis. For
example, the Fed is only an active investor in the long-term Treasury market after
2009, and the existing literature has documented that the new regulations since
the global financial crisis hamper the intermediation capacity of the banking sec-
tor (Du, Tepper, and Verdelhan 2018; Stulz, Taboada, and van Dijk 2022, among
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others). We also allow for these sectors to have different elasticities across regimes,
denoted as the subscript r(t). We assume that r(t) takes two values, and set 2009Q1
as the start of the second regime.

Common factors ηt We control for an extensive set of common factors that help
explain Treasury price fluctuations. For macro variables, we include innovations
to VIX – the canonical indicator of global risk sentiment – to gauge the intensity
of “flight to safety”. We include quarterly changes in the effective Fed funds rate
to control for the short-end movement in the interest rate and examine the pass-
through of the short rate to longer-term interest rates. We also consider innovations
to the USD broad index, and gap between quarterly CPI inflation and the inflation
target (0.05 percent per quarter, or 2 percent per annum). As common factors are
assumed to be exogenous to idiosyncratic shocks and prices in the Treasury mar-
ket, we avoid controlling for factors directly related to the Treasury market such as
the credit spread. Adding more macro factors does not meaningfully improve the
explanatory power of flows and prices, and risks overfitting.

Two policy sectors, the Fed and the Department of Treasury (supply), pre-
announce planned purchases and sales for policy transparency and forward guid-
ance. For this reason, we also include variables predicting their flows in the com-
mon factors to capture policy anticipation and potential front-running behaviors
of other sectors. For the Fed, we control for the purchase scheduled a quarter
ahead.18 For the Treasury, we include net issuance in the previous quarter to con-
trol for the predictive components in supply. After controlling for those factors,
the coefficients estimated for the Fed and the supply measure the flow sensitivity
due to deviation from the scheduled purchases and sales.

One potential threat to our identification strategy is that there exists a hidden
factor structure among the idiosyncratic shocks ui,t, so that residual covariance
remains even after controlling for the macro factors. To ensure the robustness of
our estimates, we use a version of principal component analysis (PCA) robust to
outliers to extract common factors from the flows by foreign countries and banks,
for which we have micro data on country- and bank-level Treasury holdings. We
pick 3 common factors in the baseline as further extraction only minimally increase
the explanatory power, and in Appendix Table C.3 we report the specification with

18Appendix C.2 discusses the construction of the scheduled purchase series.
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more factors and the results are almost identical.

Unobserved idiosyncratic flows The price elasticities are identified using the
moment condition that ui,t is orthogonal to each other (see Section 2):

E [ui,tuj,t | ηt] = 0 ∀i ̸= j.

3.2 Elasticity Estimation

We start with the price elasticities. Table 1 reports the elasticity estimates of the
baseline model (averaged across time for sectors with regime shifts). In Appendix
Table C.5 we report the full table of the model estimates including factor loadings.

Aggregate Price Elasticity The estimate for aggregate market elasticity is 1.01,
suggesting that a 1% demand shock lead to around 1

1.01
= 99bps increase in the

aggregate price of the market portfolio, equivalent to a 20bps decrease in yields for
a five-year bond or a 10bps decrease for a ten-year bond.

To put the numbers into perspective, the U.S. aggregate equity market multi-
plier is around 5 ∼ 8 (Gabaix and Koijen 2022), and that of the corporate bond
market is around 3 at the level of portfolios of bonds with the same credit rating
(Chaudhary, Fu, and Li 2023). Our estimates is consistent with the prior that the
Treasury market is a very liquid market.19

To further shed light into the estimation of the aggregate elasticity, notice that
from the price equation we can write the aggregate elasticity as the ratio between
the volatility of aggregate demand shocks, fDS,t ≡ S′ (λr(t)ηt + f̄ + ut

)
, and the

volatility of the price:

pt =
1

ζS

λS,r(t)ηt + f̄S + uS,t︸ ︷︷ ︸
fDS,t

 =⇒ ζS =
std(fDS,t)

σp
. (3.3)

This equation offers a very intuitive understanding of the aggregate elasticity. The

19The literature often finds that “micro” price elasticity is larger than the market-wide “macro”
elasticity. Koijen, Koulischer, et al. (2017) find a micro elasticity of 3 for the Euro Area government
bond market, adding to the plausibility of our macro estimate.
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market is elastic if there are volatile demand shocks while the price are stable, and
vice versa. While we observe the volatility of the price, the demand shocks are not
directly observable. Instead, we only observe the flows, which is equal to the sum
of demand shocks and the response to equilibrium price changes. Nevertheless,
we can use the volatility of flows to gauge a reasonable magnitude of the price
elasticities.20 The size-weighted average of the flow volatility,

√∑
i S

2
i var(fi,t), is

around 3.62% at the quarter frequency, while the price volatility is around σp =

2.6%, making the ratio around 1.38, the same order of magnitude as our estimate.
To formally estimate ζS using this formula, one needs to identify the covariance
of the underlying demand shocks for each investor. Our method is designed to
address this identification need.

Heterogeneous elasticities across sectors Underlying the aggregate elasticity es-
timate are different sectors with vastly heterogeneous elasticities. Table 1 reports
the elasticity of each sector, ordered by their average contribution to the aggregate
elasticity, ζ share ≡ ζi×Si

ζS
.

Figure 3 provides an illustration of our sector-specific estimates against the OLS
approach of estimating price elasticities. For the household sector and the mutual
fund sector, we plot their “demand curves”. We residualize sector inflow into
Treasuries against common factors and plot it on the x-axis. The y-axis represents
two notions of Treasury price changes. Using green circle markers, we plot the
observed price changes, also residualized against the common factors. OLS esti-
mation would thus imply that that the household sector is completely inelastic,
while mutual funds have a slight downward-sloping demand curve. Simultaneity,
however, renders OLS estimators biased in this context: When sectors are granular
and demand is downward-sloping, a higher asset price reduces demand, but the
reduced demand will counteract the price.

In orange, we plot the flows against the predicted price changes from idiosyn-
cratic shocks from other sectors that we extract from our estimation. As discussed
in the IV interpretation of in Section 2, the slopes of the orange lines correspond

20Roughly speaking, there are two sources of errors when approximating aggregate demand
shock volatility std(fD

S,t) using the size-weighted flow volatility: First, the flow volatility contains
the variance of flows in response to price changes, and hence it may overstate the volatility of the
demand shocks and therefore overestimate the elasticity. Second, it does not capture the cross-
sectional covariance in demand shocks. When demand shocks are positively correlated, it under-
states the aggregate demand volatility and implied elasticity.
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Table 1: Average price elasticities

Sector S(%) ζ ζ Share (%)
Aggregate 1.01 100.0

(0.77, 1.25)
Households 5.74 9.8 55.74

(5.07, 14.54)
RoW 44.45 0.42 18.41

(0.24, 0.61)
Fed 22.08 0.44 9.84

(0.11, 0.78)
Mutual Funds 6.75 0.61 4.11

(0.15, 1.08)
Banks 5.26 0.67 3.41

(0.42, 0.91)
Insurance 2.59 0.99 2.54

(0.66, 1.32)
Dealers 0.81 2.04 1.63

(-6.61, 10.69)
Other 11.78 -0.07 -0.85

(-0.3, 0.15)
ETF 1.18 -0.49 -0.58

(-0.85, -0.13)
Pension 5.42 -0.1 -0.56

(-0.27, 0.06)
Supply 100.0 0.06 6.3

(-0.01, 0.14)

Note: Table 1 reports the aggregate price elasticity, sector-specific price elasticity of demand ζ for
the 10 investor categories in the sample, and the price elasticity of supply. The sample period is
2003Q4–2023Q4. The price elasticities are identified using the optimal GIV estimator developed
in Section 2. Time-series averages are taken for sectors that assume to have different elasticities
before and after 2009Q1 (the sectors include Federal Reserve, Rest of World and U.S. Banks). S
corresponds to the size weight used in the estimation, defined as the average market share of each
entity throughout the sample period. ζ share denotes the (size-weighted) fraction of aggregated
elasticity accounted for by each sector. 95% confidence intervals are reported, with the standard
errors given by Theorem 2.

exactly to the (reciprocal of) the elasticity coefficients reported in Table 1.21 Using

21To further ensure the exclusion restriction is respected, we can exclude all moment conditions
involving the target sectors (households/mutual funds) when extracting idiosyncratic shocks for
other sectors. In this way, those extracted idiosyncratic shocks are completely unrelated to the tar-
get sectors except through the price. This is corresponding to the leave-one-out estimator reported
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the instrumented price changes reveals that the household sector is in fact highly
elastic. Mutual funds are also slightly more elastic than what the simple correlation
suggests.

The debiased-OLS interpretation of our optimal GIV estimator (see Lemma 1)
helps interpret these differences. Though the mutual fund sector and the house-
hold sector are comparable in terms of sizes, the household sector has much more
volatile idiosyncratic shocks than the mutual fund sector, a pattern that is also visi-
ble from the volatility of the raw flows. The optimal GIV estimator recognizes that
and make larger correction for the household sector than for mutual funds.

Overall, after adjusting for biases, the household sector is the most price elastic,
accounting for 55% of the total liquidity provision in the market. As discussed in
the data section, the household sector is a catch-all sector that includes other type
of investors not covered by the Financial Accounts, such as hedge funds, family
offices, separately managed account for high net-worth individuals, endowment
funds by not-for-profit organizations, etc. These investors with high sophistica-
tion, less regulatory constraints and sufficient capital intuitively can act as the most
nimble liquidity providers of the Treasury market.

Moving on to other sectors, we estimate investors from the rest of the world
are on average less elastic than the domestic sectors, but due to its large market
share, the foreign sector is the second largest contributor to the aggregate elasticity.
The Fed is estimated to be price-elastic—as we discuss in details in Section 4.2,
we control for the Fed’s scheduled purchase so the elasticity estimates are from
the surprises, primarily the decision on when to initiate or exit its asset purchase
programs.

Security brokers and dealers are not contributing much to the aggregate elas-
ticity (only 1.63%), a finding that is seemingly at odds with the large literature on
the the crucial role of primary dealers in the Treasury market and the heavy pol-
icy emphasis. To reconcile this difference, we note that our estimates are based
on quarterly data, while the discussion on primary dealers are typically centered
around a much higher frequency, including intraday trades. Even though gross
trading flows via broker-dealers every day is huge, they typically do not hold large
inventories for an extended period, and hence both their net positions at quarter
ends and net flows are very small. On average their net position at quarter ends are

in Appendix Table C.4.
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Figure 3: Optimal GIV vs. OLS: Two examples

Flow (%)
−50 0 50

P
ri

ce
 C

h
an

g
e 

(%
)

−6

−4

−2

0

2

4

6
(a) Households (HF incl.)

Flow (%)
−10 0 10

P
ri

ce
 C

h
an

g
e 

(%
)

−6

−4

−2

0

2

4

6
(b) Mutual funds

Observed price Instrumented price

Note: Figure 3 compares the estimated price elasticities of demand using our identification ap-
proach to the OLS estimates, using the household sector and the mutual fund sector as case studies.
In both panels, the green dots relate the sector inflow to U.S. Treasury notes and bonds to observed
quarterly changes in the Treasury price, both residualized against the common factors included
in our baseline specification. For the red dots, the y-axis plots the predicted price changes using
size-weighted idiosyncratic shocks (excluding the sector of interest) estimated from the GMM pro-
cedure.

less than 1% of total market values. Panel (a) in Figure 4 compares their net dollar
flows with the aggregate flows from the supply and other investors and confirms
that the net flows from the broker-dealers are tiny. Given their relatively small net
flows, they are unlikely to provide significant liquidity on a quarterly basis.

In Panel (b) of Figure C.1 we plot the aggregate demand-supply imbalance from
other sectors, backed out from our model, and the dealers’ flows. If two bars point
to the same direction, then the dealers provide liquidity to the rest of the market.
However, if anything, broker-dealers only cover a very small percent of the total
demand imbalance, and often go in the opposite direction: For example, in 2008,
when there was a net buying pressure from the rest of the economy, broker-dealers
also purchased a significant share of Treasury bonds.
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Figure 4: The role of security broker-dealers
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(b) Demand-supply imbalance
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Note: Figure 4 examines the role of security broker-dealers in affecting U.S. Treasury yields at
low frequency. In Panel (a), we compare net annual flow into the Treasury market due to broker-
dealers (in green) with those of other holders and the net issuance. In Panel (b), we plot a measure
of demand-supply imbalance and the broker-dealers’ degree of accommodation. For all sectors
except the broker-dealers, the red bars aggregate the demand/supply curve shifts due to common
factors and idiosyncratic shocks, qit + ζir(t)pt to the annual frequency. The green bar, on the other
hand, plots the annual total selling due to the broker-dealers. Bars pointing to the same direction
indicates that dealers are accommodating the demand-supply imbalance of other sectors, by either
selling when others increase demand, or buying when others sell.

Exchange-traded funds (ETFs) and pension funds are among the least elastic
sectors. These findings can be explained by the passive and inactive investment
behaviors of these sectors. ETFs are mostly passive, whose mandate forbids them
to actively time the market. Pension funds are also known as buy-and-hold in-
vestors in the Treasury market.22 Finally, the supply has a weak positive elasticity
that is indistinguishable from zero. This is consistent with the treasury’s “regu-
lar and predictable” debt management stance, that it does not seek to time the
market in issuance. Every quarter, the Treasury announces its anticipated offer-
ing amounts of notes and bonds in the next quarter, and deviations from these

22Our finding is also consistent with Koijen, Koulischer, et al. (2017), who find that pension funds
have the lowest price elasticity in the European government bond market.
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announcement are small in normal periods (Cassidy and Mirani 2024).

Robustness of elasticity estimates We perform extensive robustness checks to
show our elasticity estimates are highly stable across various specifications. One
may be concerned that as all elasticities are estimated jointly, estimation errors
for one investor can propagate into the whole system. In Table C.4 in Appendix,
we report the estimation results while excluding sectors in turns. No single sector
drives our results, as we recover very similar sector-level elasticity estimates across
all specifications. In Table C.3, we further put the model to test under multiple
other specifications: 1) we include 5 unobserved common factors recovered from
PCA; 2) we use only the Financial Account data to extend the sample back to 1970;
3) we estimate the results including Treasury bills as well. The results across all
these specifications are largely comparable. The elasticities including Treasury bills
are estimated to be larger, with the aggregate elasticity being 2.0. This is consistent
with the prior that bills are much more liquid.

The price impact at longer horizons Like Gabaix and Koijen (2022) for the equity
market, we find a persistent impact of demand and supply shocks in the Treasury
market. To study how demand shocks propagate across time, we construct the
aggregate idiosyncratic shocks estimated from the model ûS,t =

∑
i Siûi,t, and esti-

mate the following local projections (Jordà 2005):

∆pt+ht = αh +MhûS,t + λ
p
hηt + et+h, (3.4)

for h = 0, 1, . . . 8 quarters, where ∆pt+ht is the cumulative price changes from quar-
ter t to t+h. We also estimate the local projection using the price change in the last
quarter, ∆pt−1 as a placebo test.

Figure 5 presents the cumulative price impact Mh of a one-percent demand
shock, and the shades report the 95% confidence interval. The price change in the
last quarter (h = −1) does not predict the demand shock in this quarter, lending
assurance that the demand shock is not priced in prior to the shock. On impact,
the price goes up by 1%, consistent with our macro multiplier estimate. The price
impact persists and remains significant for 8 quarters. Limited by statistical power,
we are unable to reject the price impact to be zero after 8 quarters.
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Figure 5: Dynamic Price Impact of Demand and Supply Shocks
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Note: Figure 5 plots the impulse response function of Treasury price to demand and supply shocks.
To get the impulse response function, we use the extracted size-weighted idiosyncratic demand
and supply shocks ûS,t to estimate a local projection (Jordà 2005) following (3.4). Homoskedastic
standard errors are used to construct the 95% confidence interval.

3.3 Price Decomposition

To understand the time-varying importance of sectors and factors in driving Trea-
sury yield fluctuations, we use the equilibrium pricing equation (see (3.1)) to con-
duct a decomposition exercise. We decompose the Treasury yields in two ways—
on a sector-by-sector or a factor-by-factor basis, keeping the market multiplier
fixed. In the former case, a sector i’s contribution to Treasury price changes are
given by the sum of the fixed effect, the response to common factors, and the id-
iosyncratic shocks, scaled by the market multiplier:

p̂i,t = ζ̂−1
S,r(t)(Sif̂ i + Siλ̂i,r(t)ηt + Siûi,t).

Hats denote estimated values.23 For the latter case, the k-th factor’s contribution
23The idiosyncratic shock for each sector, ûit, is backed out from the estimated linear system.
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is given by the size-weighted sum of all sectors’ sensitivity multiplied by the sector
itself, and scaled by the aggregate elasticity:

p̂η(k),t = ζ̂−1
S,r(t)λ̂S,r(t)ηt(k),

Finally, the idiosyncratic shocks’ total contribution equals ζ̂−1
S,r(t)ûS,t. Our esti-

mates indicate that idiosyncratic shocks can explain 58% of the total variation of
Treasury prices during our sample period.24

To better highlight the economics underlying the decomposition results, we
group the sectors into several broad groups, singling out the influences of major
U.S. financial institutions (including mutual funds, ETFs, insurance companies,
pension funds and banks) as a whole, foreign investors, the Federal Reserve, and
the issuer sector. We also create a group named “US Other” to include participants
in the Treasury market difficult to categorize, in particular including the house-
hold sector. This group also includes non-financial sectors (non-financial compa-
nies, state and local governments), and financial firms with tiny holdings, such as
bank holding companies, credit unions, GSEs, and ABS issuers.25 Similarly, we
group factors into several categories, highlighting the contribution of four factors:
VIX changes, inflation, shifts in the U.S. dollar’s strength, as well as the Federal
Funds rate. Unobserved common demand factors, predictable Fed purchases and
net issuance in the previous quarter are combined in a group labelled “common
demand”, to reflect the idea that these factors are either known to all market par-
ticipants or capture hidden factor structures in investor demand across sectors. We
scale price changes by weighted aver age duration of Treasury bonds and notes
over the sample period (roughly 6 years) to arrive at yield changes in percentage
point terms.

Figure 6 plots our decomposition by sector, from which we read off general
patterns of time-varying, heterogeneous influences across sectors. In the upper
panel, we show the yield decomposition quarter by quarter, and in the lower panel
we organize them into 6 episodes for better interpretability by taking the quarterly

24The decomposition exercise can be understood in the spirit of Jiang, Richmond, and Zhang
(2024). Each quarter, starting from zero price changes, we sequentially turn on the influence of
each sector or factor and compute counterfactual market-clearing price changes. Our linear system
comes with the benefit that we can read off the counterfactual prices analytically without resort to
numerical calculations.

25Table C.1 report the detailed sector categorization.
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Figure 6: Contribution to Treasury yield fluctuations by investor and issuer
groups

2004-Q1 2008-Q1 2012-Q1 2016-Q1 2020-Q1

A
v

g
. Δ

Y
ie

ld
 p

er
 q

u
ar

te
r 

(p
p

)

−2

−1

0

1

2

03q4-07q3 07q4-10q3 10q4-14q4 15q1-19q4 20 21q1-23q4

A
v

g
. Δ

Y
ie

ld
 p

er
 q

u
ar

te
r 

(p
p

)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Pre-crisis

GFC

QE II&III

Post-QE

Covid Post

Covid

Rest of the world Fed US fin institutions

US Other Supply ΔYield

Note: Figure 6 reports our main yield decomposition exercise by attributing Treasury yield move-
ment during our sample period to each broadly-defined investor and issuer groups. The top panel
reports the decomposition quarter by quarter, and the bottom panel groups the quarterly numbers
to 6 distinct episodes. We aggregate investor sectors reported in Financial Account (Z.1) to four
investor categories and one issuer sector (“supply”), the exact mapping available in Appendix C.1.
Group-specific contribution is backed out from the pricing equation (3.1), assuming that the market
multiplier is fixed at the estimated value ζ̂−1

S . We report average yield contribution per quarter in
percentage points and the width of the bars in Panel (b) reflects the length of the corresponding
episode.
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averages. Among all investor sectors, foreign investors push down Treasury yields
by the most from 2003 to 2010, by an average of 33 basis points per quarter. Their
contribution considerably narrows after 2010, a finding to be discussed extensively
in Section 4.3. The Federal Reserve has started to participate in the Treasury market
extensively since 2009. Their demand offsets 42% of the upward pressure on yield
due to an expanded supply during the QE period. Meanwhile, major U.S. financial
institutions, such as mutual funds and pension funds, play a relatively minor role
in driving Treasury yields.

Two crisis episodes, the Global Financial Crisis (GFC) and the initial phase of
the COVID-19 pandemic in 2020, offer a stark contrast. During the GFC and its af-
termath (07Q4–10Q3), a variety of sectors pushed down Treasury yields. Foreign
investors contribute 53 basis points per quarter, followed by U.S. household sector
(36 basis points, labelled “US Other” in Figure 6) and major U.S. financial insti-
tutions (24 basis points). On the other hand, the Federal Reserve accounts for the
majority of the downward yield pressure during 2020. On a quarterly basis, the
Fed’s purchase reduces yield by 62 basis points. The other sectors, used to be ac-
tive during the GFC, account for only 2.5 basis point decline in yields, and among
them, foreign investors and U.S. households marginally pushed up the yields.

In Figure 7, we plot the contribution of aggregate factors and idiosyncratic de-
mand and supply shocks, also in percentage point terms in yearly averages. Con-
sistent with VIX being a barometer of global risk sentiment, the negative impact of
VIX on yields is more pronounced during crisis episodes. In particular, VIX surges
lead to a 48 basis point decline in Treasury yields during 2020, and 84 basis points
cumulatively during the financial crisis episodes (07Q4–10Q3). In Section 4.1, we
further investigate in detail which sectors are fleeing to Treasury when the global
risk sentiment is high.

Conventional monetary policy also exhibits substantial time variation in its in-
fluence on longer-term yields. Pre-crisis, consistent with the interest rate “conun-
drum” identified by Greenspan (2005), we estimate that despite the Fed’s rapid
rate hike of more than 4 percentage points over two years, the cumulative pass-
through of the short rate on the yields on Treasury bonds and notes is 78 basis
points. During the two crisis episodes, the Fed’s interest rate cut lowers yields by
96 and 52 basis points respectively on a cumulative basis. The recent tightening
cycle that began in early 2022 raises Treasury yields by a total of 1.8 percentage
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Figure 7: Macro and idiosyncratic drivers of Treasury yields
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Note: Figure 7 reports our yield decomposition exercise attributing yield movements to common,
macro factors, idiosyncratic shocks, and group-specific fixed effects. Factor-specific contribution
is backed out from the pricing equation (3.1), assuming that the market multiplier is fixed at the
estimated value ζ̂−1

S . We report average yield contribution per quarter in percentage points and
the width of the bars in Panel (b) reflects the length of the corresponding episode. The bars named
“common demand” nest the influence of policy factors (announced Fed purchase and lagged net
issuance), and the impact of three principal components extracted from granular Treasury holding
data of U.S. banks and foreign investors. The width of the bars reflects the length of the corre-
sponding episode.

points.26

Hanson and Stein (2015) argue that the effect of monetary policy on long-term
rates are at odds with models based on sticky prices, and propose an alterna-
tive channel through demand pressures induced by reach-for-yield motives. Our
model framework allows us to investigate whose demand pressure passes through
the short rate to the medium-to-long term yields. Table C.5 in the Appendix re-

26The decomposition exercise involving macro factors is interpreted as in terms of the devia-
tions of the aggregate factors from a neutral benchmark level. Using different benchmarks would
quantitatively affect the portion of contribution assigned to the macro factors versus the intercept
(which are included together with the sector-specific idiosyncratic component in this exercise). We
use economics to guide our selection of the benchmark. For most factors we use sample means as
the benchmark, except for the Fed funds rate and the CPI. For the former, we use first differences
and use zero as the natural benchmark. For the latter, we use the inflation target—2 percent per
annum—as the benchmark. Hence, the intercept is interpreted as the average price pressure from
all sectors under the scenario of a constant Fed funds rate, 2% CPI inflation, and average values in
other macro factors.
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ports the full coefficients of factor loadings by sectors. Almost all sectors nega-
tively load on the Fed funds rate, suggesting that when the short rate decreases
and term premia increase, these sectors’ demand for Treasury notes and bonds
increase. Notably, for a 1% Fed funds rate increase, banks’ demand for Treasury
notes and bonds decrease significantly by 3.63% (p < 0.05). This is also consis-
tent with the literature on the deposit channel of the monetary policy (Drechsler,
Savov, and Schnabl 2017): deposits in the banking system are highly sensitive to
the short-term interest rate. As the Fed Funds rate rises, banks widen the spreads
they charge on the deposits and deposits flow out of the banking system. Corre-
spondingly, they reduce holdings in Treasuries to meet thedeposit outflow.

Consistent with the asset-liability management practices of insurance compa-
nies and pension funds (ICPFs), we find their demand for long-term bonds in-
creases when the Fed funds rate rises. ICPF liabilities have a particularly long
duration, which exposes them to interest rate risks. To hedge this risk, ICPFs pur-
chase long-maturity bonds. However, available bonds typically have a shorter
duration than their liabilities. Hence, ICPFs rely on dynamic trading strategies,
which require them to take a leveraged position in bonds to synthetically match
the duration of liabilities (Domanski, Shin, and Sushko 2017; Li 2024). When Fed
funds rise, holding long-term yields fixed, this causes the value of assets to fall
more in value than liabilities, requiring ICPFs to purchase more long-term bonds
to ensure they are still duration-matched, resulting in a positive loading of the Fed
funds rate.

The force of inflation has been dormant in the Treasury market in most of the
sample periods we study. Nevertheless, after the COVID-19 pandemic, fiscal and
monetary stimulus around the globe and supply-chain pressures pushed the infla-
tion to a level that has not been seen since the Great Inflation in 1980s. Our esti-
mates indicate that inflation alone pushed up the yields by 1.6 percentage points
in the three years since 2021. In terms of the sectoral contribution, the household
sector is by far the most sensitive sector to inflation. 1 percentage point higher
inflation leads to the household sector reducing Treasury holdings by 16%. This
finding corroborates empirical evidence in Nagel and Yan (2022), who show that
households pay attention to news on rising inflation and respond by flowing out
of nominal Treasury-related investments.27

27The Financial Accounts data do not distinguish between nominal Treasury securities and
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4 Understanding Important Drivers of Treasury Yields

We use our estimated price elasticities, factor loadings, and decomposition to shed
light on a number of macro-financial phenomena related to the U.S. Treasury mar-
ket. We show that foreign investors are not the main contributor to Treasury yield
compression when global risk sentiment worsens. While foreign investors exert
considerable downward pressure on Treasury yields before 2010, both their mar-
ket share and their role in driving Treasury yields weakens afterwards. Impor-
tant private-sector holders of U.S. Treasuries, such as foreign investors and U.S.
banks, become more inelastic after the financial crisis. In place of those sectors,
the Federal Reserve started to play the role of a state-contingent liquidity provider
that supports the market especially during risk-off episodes such as the COVID-19
pandemic.

4.1 Foreign Investors and “Flight to Safety”

A salient feature of U.S. Treasuries in this century is their tendency to appreciate
during downturns. This countercyclicality makes Treasuries particularly attractive
in an investor’s portfolio as they act as a hedge against the market (Campbell,
Pflueger, and Viceira 2019). In particular, a significant proportion of this hedging
property arises from the “convenience yield,” a component generally attributed to
the special demand for U.S. Treasuries (Acharya and Laarits 2024).

Recent literature makes significant progress in resolving a number of impor-
tant puzzles in international finance by resorting to the specialness of U.S. debt
during global downturns. State-of-the-art models posit a countercyclical demand
for U.S. Treasuries, as the safety and liquidity of U.S. government debt become
particularly appealing when global risk sentiment worsens (Jiang, Krishnamurthy,
and Lustig 2021; Kekre and Lenel 2024, among others). Typically in these anal-
yses, foreign investors are considered to be the key source of the countercyclical
demand. At the onset of the COVID-19 pandemic in March 2020, the sell-off of
Treasuries by foreign investors triggered discussions in the academic literature as

inflation-indexed Treasury bonds (TIPS), limiting our analysis on inflation hedging behaviors
largely at a high level. However, the TIPS market represents less than 10% of all marketable debt
issued by the Treasury as of 2024 and was even smaller in the earlier sample. Hence, we mainly
attribute household flows as related to nominal bonds and notes.
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well as among policymakers on whether the special status of US Treasuries has
waned (He, Nagel, and Song 2022; Weiss 2022; Vissing-Jorgensen 2021). However,
perhaps surprisingly, the empirical relationship between foreign Treasury demand
and global risk is in fact not well-established in the literature.

Through the lens of our estimated model, we are able to assess to what extent
foreign investors drive “flight to safety”. We examine the estimated flow loadings
on quarterly changes in the VIX index for foreign investors – in the data, the nega-
tive comovement between Treasury yields and the VIX index is strong, making the
VIX a natural barometer of investors’ propensity to seek safe investments in risky
times.

Table 2: Sensitivities to global risk sentiments for selected sectors

Sector S(%) ϵV IX(std.) ϵV IX(std.) Share (%)

Aggregate (09-) 0.87 100.0
(0.17, 1.57)

Households 5.74 15.46 101.93
(6.14, 24.79)

Fed (09-) 22.08 2.18 55.22
(1.38, 2.97)

Rest of World 44.45 -0.33 -16.63
(-0.98, 0.33)

Supply 100.0 -0.12 -13.65
(-0.33, 0.09)

Mutual Funds 6.75 -2.06 -15.98
(-3.59, -0.53)

Note: Table 2 reports the estimated responsiveness to a rise in the VIX index for a seleted set of
sectors in the data. The sample period is 2003Q4–2023Q4. The loadings are identified using the
optimal GIV estimator developed in Section 2. S corresponds to the size weight used in the estima-
tion, defined as the average market share of each entity throughout the sample period. εV IX

(std.), the
regressor of interest, is obtained by running a AR(1) time-series regression on the VIX index and
taking the residual. εV IX

(std.) share denotes the (size-weighted) fraction of aggregated VIX loading
accounted for by each sector. 95% confidence intervals are reported, with the standard errors given
by Theorem 2.

Table 2 reports the size-weighted aggregate VIX loading as well as sector-specific
loadings for a selected set of investors. The loadings for the entire set of investor
groups are reported in Table C.5 in the Appendix. Overall, one standard deviation
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increase in the VIX index leads to a 0.87 percent inflow into the Treasury market.
The household sector displays the strongest “flight-to-safety” behavior, increasing
demand for Treasuries by 15.5 percent. For foreign investors, we find no evidence
that their sensitivity to VIX is significantly different from zero. If anything, the
point estimate is negative, suggesting that foreign investors on average demand
less U.S. Treasuries during risk-off episodes.

Figure 8: Foreign flows (net of issuance) and global risk indicators
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Note: Figure 8 illustrates the importance of accounting for equilibrium interactions among in-
vestors and issuers to properly estimate the sensitivity of Treasury demand to shift in global risk
sentiments, proxied by VIX innovations. In both panels, we plot foreign (green) and U.S. domestic
(red) inflow to Treasury notes and bonds f (% of total holdings in the previous quarter), net of total
issuance g (also expressed as % of total market value of outstanding issuance the previous quar-
ter). Panel (a) plots all observations throughout the sample period. Panel (b) focuses on the Global
Financial Crisis episode at the monthly frequency (2007/12-2009/12).

Our finding of a negative loading of foreign Treasury demand on VIX contrasts
with the standard approach of modeling foreign investors actively redirecting as-
set demand towards U.S. safe assets during downturns. In fact, the clues for this
result can be found using a more reduced-form approach. In Figure 8, we plot
foreign inflows net of Treasury issuance (normalized by market size) over the en-
tire sample period (panel (a)) against domestic flows, and find a sharp difference:
On average when VIX is high, foreign investors tend to buy less, or sell more,
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Treasuries compared to domestic investors.. This pattern is also not a recent de-
velopment since the pandemic, but is present at the monthly frequency during the
Global Financial Crisis. We note that simple correlation or direct regression coef-
ficient between flow and VIX does not capture an investor’s true responsiveness
of Treasury demand to rising global risk sentiment but only the relative tendency
(see more discussion in Section 2). Only through an equilibrium model are we
able to disentangle the endogenous demand response from the observed equilib-
rium holdings. Hence, this finding underscores the importance of accounting for
endogenous demand and supply interaction when discussing phenomena related
to international capital flows.

4.2 The Transformation of Liquidity Provision

Through the lens of our estimates, we discuss the liquidity provider role of Trea-
sury market participants from two perspectives. First, investors’ price elasticities
of demand reflect their capacity to stand on the other side of the market when
other investors’ negative demand shocks and surprise new issuance of U.S. Trea-
sury put downward pressure on Treasury prices. Second, liquidity provision could
be state contingent. When aggregate conditions worsen and triggers selling pres-
sure, sectors whose demand increases with adverse macro shocks would be in a
better position to supply liquidity to the market and absorb the resulting imbal-
ances.

The flexibility of our framework allows us to inspect the regime shifts in price
elasticities of demand of important participants in the market. We report these
elasticities for foreign investors and U.S. banks in Table 3. For foreigners and U.S.
banks, we observe a 56% and 61% respective decline in price elasticities in the
post-crisis era relative to the 2003–2008 period.

The decline in price elasticity for U.S. banks captures several important aspects
of banking industry development post-crisis that tighten their intermediation ca-
pacity (see Du, Tepper, and Verdelhan 2018, for more discussion on the implication
for other markets). More specifically, non-risk-weighted regulatory constraints,
such as supplementary leverage ratio requirements, make it more costly for banks
to expand balance sheets for Treasury-related intermediation activities (Favara, In-
fante, and Rezende 2024). Tighter risk-based regulations could strengthen the in-
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centive for banks to substitute loans for liquid Treasury holdings (Stulz, Taboada,
and van Dijk 2022). In addition, during the post-COVID monetary tightening cy-
cle, the share of securities in banks’ portfolio designated as held to maturity sub-
stantially increases, as banks exploit accounting rules to insulate book capital from
the rising interest rate (Granja et al. 2024). All these forces could act to reduce
banks’ sensitivity to price movements.

On the other hand, the Federal Reserve has acted as an state-contingent liquid-
ity provider post-crisis. Table 4 reports the estimates for the Fed since 2009. In
these estimates, we control for anticipated purchases by the Fed as a macro factor,
and all the estimates reflect the deviation of the Fed’s purchases from the antic-
ipated path.28 The Fed is price elastic: they tend to initiate QE operations when
Treasury market faces downward demand pressures. This is consistent with the
objective and framework of the QE operation (Gagnon et al. 2011b), which also
seeks to stabilize the Treasury market. Indeed, the language “the smooth func-
tioning of the Treasury market” appears frequently in the FOMC minutes.29 The
Fed’s QE policies also actively respond to the market distress, captured by the VIX
index. We estimate that the swift response of the Fed to intervene in the Treasury
market at the height of the COVID-19 crisis led to a 2 percentage point decline in
the yield of Treasury bonds and notes, offsetting the upward pressure to yields
mostly driven by supply expansion.30 Finally, we also see a strong coordination of
the coordination between the direct purchases and traditional monetary policies.
When the Fed raises the Fed funds rate, or when inflation rises, it also simultane-
ously reduces its purchases.

28The Fed’s purchases are typically announced in the FOMC meetings and pre-scheduled. In
Appendix C.2, we discuss in detail the construction of the anticipated purchases, and show the
deviations occured mostly in the initial and concluding phase of each QE operation in which the
Fed has ample policy space to respond to contemporaneous macroeconomic and financial factors
including yields.

29For example, the announcement of Treasury securities operations in 2020 by the New York
Fed specifically stated “The Desk stands ready to adjust the size and composition of its purchase
operations as appropriate to support the smooth functioning of the Treasury market”. In another
announcement around the same time, they explicitly mentioned that “the Desk will conduct pur-
chase...subject to reasonable prices.”

30One way that the state-contingency purchases further reduce Treasury yields is through the
insurance channel proposed by Haddad, Moreira, and Muir (2024): supporting bond prices in bad
states provides additional safety and lowers bond risk premia. Haddad, Moreira, and Muir (2024)
finds that the insurance channel can account for 75% of QE’s effect on yields.
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Table 3: Regime shifts for price elasticities of U.S. banks and foreigner, before
and after 2009

Sector ζ ζ Share (%)

Rest of World (03-08) 0.72 29.88
(0.45, 1.0)

Rest of World (09-23) 0.32 14.4
(0.17, 0.47)

U.S. Banks (03-08) 1.21 5.94
(0.85, 1.58)

U.S. Banks (09-23) 0.47 2.52
(0.27, 0.67)

Note: Table 3 reports the estimated price elasticities of demand for U.S. banks and foreign investors
before and after the assumed regime shift date of 2009Q1. The model is estimated using data from
2003Q4 to 2023Q4. The price elasticities of demand are identified using the optimal GIV estimator
developed in Section 2. 95% confidence intervals are reported, with the standard errors given by
Theorem 2.

Table 4: Treasury Demand of the Federal Reserve

Period S(%) ζ ϵV IX(std.) ∆ FFR Inf.

09-23 22.08 0.59 2.18 -5.43 -0.81
(0.32, 0.87) (1.38, 2.97) (-7.42, -3.45) (-1.96, 0.34)

Note: Table 4 reports a select set of estimated parameters related to the Federal Reserve’s demand
curve for U.S. Treasury notes and bonds. ζ refers to the price elasticity of demand. εV IX

(std.) refers
to the demand loading on a positive VIX shock, obtained by taking the residual from an AR(1)
time-series regression of the VIX index. ∆FFR refers to quarterly changes in the Federal Funds
rate, and Inf. denotes the deviation of CPI inflation from the 2% per annum inflation target. 95%
confidence intervals are reported, with the standard errors given by Theorem 2.

4.3 Foreign Demand and Treasury Yields: An Evolving Relation-

ship

In the first decade of the 2000s, nearly 3 trillion USD was channelled from a di-
verse set of foreign savers to U.S. Treasury bonds and notes. High-growth emerg-
ing markets with financial market imperfections, such as China and commodity
countries, build foreign reserves mostly comprised of U.S. Treasuries. The per-
sistent current account surplus ran by developed markets such as continental Eu-
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rope and Japan served as another important source of global savings.31 Foreign in-
vestors’ potential impact on long-term U.S. interest rates received substantial aca-
demic and policy debate prior to the financial crisis, going beyond understanding
the borrowing cost of the U.S. government. Greenspan (2005) observe that despite
consecutive Fed interest rate hikes in 2004, long-term interest rates respond little.
This “interest rate conundrum” is most evident in 2006, when the effective Fed
Funds rate exceeds 10-year Treasury yield by 80 basis points. Relatedly, Bernanke
(2005) raised concern on financial stability risk from a low long-term interest rate.
Our framework allows us to precisely attribute the contribution to Treasury yield
movements by foreign investors to more granular sources and to understand their
time-varying importance, and to shed light on the potential short-run interest rate
impact of Treasury selloff by foreign investors.32

Figure 9 reports the result of our yield decomposition into components driven
by major foreign investor countries and regions. Pre-crisis, China, Europe and
Japan jointly account for 61% of foreign investors’ yield impact, lowering Treasury
yield by 0.74 percentage points per year. Of these major holders, China’s foreign
reserve accumulation is the most important driver of Treasury yield compression
in the pre-crisis period. Over the course of four years, China’s demand for U.S.
Treasury brought down yields by more than 1.7 percentage points on a cumulative
basis. Other major investors such as Japan and Europe contributed less. China
remained the biggest mover of Treasury yields during and immediately after the
financial crisis, accounting for 38% of the total impact of foreign demand. During
these two episodes, Japan and Europe also extend their influence over Treasury
yield. European investors’ contribution amounts to 9 basis points per quarter, in a
period coinciding with Euro Area’s sovereign debt market turmoil and the binding

31For additional discussion on this topic, see Caballero (2006) and Mendoza, Quadrini, and Ríos-
Rull (2009).

32Jiang, Richmond, and Zhang (2024) use a global demand system to examine the role of global
savings in accounting for the evolution of U.S. net foreign asset positions. While we share similar
decomposition methodology, our focus is on the Treasury price directly.
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of the zero lower bound for U.S. nominal interest rates.33

In stark contrast to the pre-crisis episodes, foreign investors’ role in driving
Treasury yields has substantially weakened since 2011. On a yearly basis, foreign
demand pushes down Treasury yields by an average of 40 basis points, mostly
driven by European investors in the aftermath of the debt crisis. On the other
hand, during the initial phase of the COVID-19 pandemic, foreign investors’ sell-
ing increased Treasury yields by 34 basis points. Du, Im, and Schreger (2018)
document that the negative gap between long-term Treasury yield and currency-
hedged G10 government yield narrowed after the financial crisis. Our estimates
provide a quantity-based perspective to complement this finding, by showing that
the compression of U.S. Treasury yield by foreign investors is concentrated in the
first decade of the 2000s.

The weakened role of foreign investors in driving Treasury yields is consistent
with previous studies documenting a smaller price impact of foreign official flows
in and out of U.S. Treasuries after the financial crisis (Beltran et al. 2013). This
finding also suggests that the degree of financial market disruption arising from
heightening geopolitical tension could be limited. As the total supply of Treasury
bonds and notes substantially expands after the financial crisis, major foreign in-
vestors account for a smaller size of the total Treasury market. Figure C.5, panel
(b) in the Appendix, for example, shows that China’s market share has declined
from the 2010 peak of 17.5 percent to 4 percent at the end of 2023. This is driven by
a faster pace of Treasury issuance while a constant position held by China before
2020, and the steady outflow of China from Treasuries since 2020. Our estimated
market multiplier of 0.99 would imply that a complete, surprise sell-off of China’s
U.S. Treasury bonds and notes within a quarter by the end of 2023 would have only
pushed up Treasury yields by 50 basis points, assuming China holds the market
portfolio. To put the size of the price impact into perspective, we notice that the
standard deviation of quarterly Treasury yield changes from 2003Q4 to 2023Q4 is
45 basis points. As a result, the negative price impact induced by an outflow the

33The concern over exchange rates could be an additional source of Treasury demand for China
and Japan, both of whom actively participate in currency intervention. For both countries, the
rapid Fed Funds rate cut to zero during the Global Financial Crisis exerted currency appreciation
pressure. For China after 2014, the slow unwinding of Quantitative Easing led to depreciation
pressure. China responded in 2015 by sharply selling its foreign reserves. Nevertheless, consistent
with the idea that the sales constitutes a smaller relative demand shock compared to pre-crisis
situation, the price impact is small.
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size of China’s entire Treasury notes and bonds holdings sits well in the normal
range of quarterly yield fluctuations.

Figure 9: Important foreign holders’ contributions to yields, percentage points
per year
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Note: Figure 9 decomposes the contribution of foreign investors to Treasury yield fluctuations
further to the level of large countries and regions. We report average yield contribution per quarter
in percentage points. The width of the bars reflects the length of the corresponding episode.

5 Conclusion

This paper introduces a novel empirical framework to understanding how de-
mand and supply forces drive asset price fluctuations. Methodologically, our es-
timation approach helps flexibly and efficiently identify heterogeneous price and
factor elasticities and precisely quantify the contribution of various market partic-
ipants to asset price movements. Our optimal GIV estimator based on granularity
can be easily applied to other markets, and will be particularly powerful in the
case of concentrated markets where demand shocks play a larger role in driving
market prices.

When applied to the U.S. Treasury market, our method offers novel answers to
a series of important questions. We provide the first direct macro elasticity estimate
of the market. We demonstrate significant structural shifts in liquidity provision
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marked by the global financial crisis, featuring the retreat of foreign investors and
U.S. banks and the rising importance of the Federal Reserve. We also show that
the “flight-to-Treasury” behavior of foreign investors during global downturns –
taken as a fact in standard narratives – is not supported in the data. While our
model is intended to provide a high-level characterization of the market dynamics,
our estimate serves as a useful benchmark to guide future research to delve deeper
into the underlying mechanisms.
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A Proofs

We prove the properties of the optimal GIV estimator for the general framework
introduced in (2.4), restated here:

qi,t = −pt ×C′
i,tζ +X′

i,tβ + ui,t,

0 =
∑

i Si,tqi,t

}
=⇒ pt =

1

C′
S,tζ

[
X′
S,tβ + uS,t

]
, (A.1)

where Ci,t and Xi,t are matrices of exogenous variables that can be individual-
specific and time-varying, and ζ and β are vectors of constant coefficients to be
estimated. Recall that we use the S subscript to denote size weighted summation,
i.e., XS,t =

∑
i Si,tXi,t. We denote the length of ζ as Nζ and the length of β as Nβ .

For convenience, I also define ζS,t = C′
S,tζ as the aggregate elasticity, and Mt =

1
ζS,t

the “multiplier”, namely, the change in pt in response to a one-unit change in
quantity.

We formally state the assumptions needed for the optimal GIV estimator:

Assumption A.1 (Full model).

1. The model is specified as in (A.1), with St > 0 and C′
S,tζ ̸= 0 with probability

1.

2. For each entity i, ui,t is i.i.d. with E [ui,t | Ct, St,Xt] = 0 and E
[
u2i,t | Ct, St,Xt

]
=

σ2
i > 0.

3. For any i ̸= j, ui,t is independent to uj,t conditional on (Ct, St,Xt).

4. E
[
Xi,tX

′
i,t

]
are non-singular.

5. The parameter space for (ζ,β) is compact and the true parameter is in the
interior of the parameter space.

Notice that we do not require the size vector Si sums to 1. The only assumption we
impose on the sizes are positive. This is not a restriction as one can always simply
swap the sign of qi,t and Si,t to satisfy the assumption. For example, the supply can
be specified as a sector with size 1 and a higher supply enters as a negative qi,t, so
that their elasticity has the same sign as other sectors.

We first proceed without the exogenous variables Xi,t. As we show in A.2, all
results describe here go through with common factors.
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A.1 Optimal GIV Estimator

For ease of reading, we reintroduce the definition of optimal GIV estimator here.
Let ψt (z) be a vector of length N(N−1)

2
with subscript ij (i ̸= j) denote the row

corresponding the entity pair (i, j) :

ψij,t(z) ≡ ûit (z) ûjt (z) ≡
(
qi,t + ptC

′
i,tz
) (
qj,t + ptC

′
j,tz
)
.

We have the conditional moment conditions:

E [ψij,t(ζ) | Ct, St] = E
[(
qi,t + ptC

′
i,tζ
) (
qj,t + ptC

′
j,tζ
)
| Ct,St

]
= E [ui,tuj,t | Ct,St] = 0.

Denote Vψ ≡ E
[
ψt (ζ)ψt (ζ)

′] = Diag
(
σ2
1σ

2
2, σ

2
1σ

2
3, . . . , σ

2
N−1σ

2
N

)
. Also denote

Ŵ∗
t (z) as a weighting matrix of the size N(N−1)

2
× Nζ , whose entry corresponding

to the row ψij and the column ζk is given as:

Ŵ ∗
ij,k,t (z) =

1

C′
S,tz

(
SjtCit,k
σ2
i

+
SitCjt,k
σ2
j

)
(A.2)

Definition. The optimal GIV estimator ζ̂ solves:

bW
∗

T

(
ζ̂
)
≡ 1

T

∑
t

W ∗
t

(
ζ̂
)′
ψt

(
ζ̂
)
= 0.

To understand how this is derived, we define the Jacobian matrix ofψt (z) eval-
uated at the true parameter, Dt =

∂ψt(z)
∂z

|z=ζ . Its entry is given as:

Dij,t = ujtptCit,k + uitptCjt,k,

and then the optimal weighting matrix is given as:

W∗
t =

(
Vψ
)−1 E [Dt | Ct, St] ,

where we use the knowledge that E [ujtpt | Ct,St] =
1

C′
S,tζ

Sjtσ
2
j .

With a complicated functional form, the weighting matrix has a very intuitive
interpretation. Consider the simple case described in the main text, where each
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investor has its own time-invariant elasticity and size, namely, Sjt = Sj and Cit,k =1 i = k

0 i ̸= k
. In this case, the optimal GIV estimator solves:

1

T

∑
t

ûit

(
ζ̂
)∑

j ̸=i

Sjûjt

(
ζ̂
)

︸ ︷︷ ︸
ûS(−i),t(ζ̂)

= 0 ∀i.

That is, the optimal GIV estimator simply weigh different sectors using their
sizes. If we further assume a homogeneous elasticity across all entities, the op-
timal GIV estimator further weigh entities sharing the same elasticity using their
respective volatility, in the same spirit as the generalized least square (GLS) esti-
mator.

1

T

∑
t

∑
i

1

σ2
i

ûit

(
ζ̂
)
ûS(−i),t

(
ζ̂
)
= 0.

We make one additional assumption on the weighting matrices to ensure the
estimator is well-behaved.

Assumption A.2. E [W∗
t
′W∗

t ] is non-singular. E [W∗
t
′ψt (ζ)] = 0 if and only if z = ζ.

In many cases, the second part of the assumption is actually redundant and
directly follows from the first part. For example, when size weights and Ci,t are
constant across time, or Ci,t are non-negative with probability 1 (such as dummy
variables), non-singular conditions in E [W∗

t
′W∗

t ] automatically implies the unique
identification. The additional assumption is only needed when we have nonre-
strictive loading factors Ci,t. To see this, consider another candidate ζ̃ ≡ ζ + ∆ζ.
We have:

E
[
W∗

t
′ψt

(
ζ̃
)]

= 0

= E

[
Mt

∑
i ̸=j

(
SjtCit

σ2
i

+
SitCjt

σ2
j

)(
ui,t + ptC

′
i,t∆ζ

) (
uj,t + ptC

′
j,t∆ζ

)]

= E

[
Mt

∑
i ̸=j

(
SjtCit

σ2
i

+
SitCjt

σ2
j

)(
Mt

(
Sjtσ

2
jC

′
i,t + Sitσ

2
iC

′
j,t

)
∆ζ + σ2

p∆ζ
′Ci,tC

′
j,t∆ζ

)]

= E
[
W∗

t
′VψW∗

t
′]∆ζ + E

[
σ2
pMt

∑
i ̸=j

(
SjtCit

σ2
i

+
SitCjt

σ2
j

)(
∆ζ ′Ci,tC

′
j,t∆ζ

)]
.
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With non-negative Cit and non-singular E [W∗
t
′W∗

t ], the only solution to the
equation above is ∆ζ = 0. However, with unrestricted Ci,t potentially multiple
roots can arise from this equation. One needs to verify the uniqueness of solution
when complicated loading factors are used.

With this definition, we prove Theorem 2, restated below.

Theorem (Asymptotic efficiency in the general model). Given the moment condi-
tions (2.7), under Assumption A.1 and Assumption A.2, the optimal GIV estimator ζ̂ is
consistent and asymptotically normal:

√
T
(
ζ̂ − ζ

)
d→ N

(
0,Vζ

)
,

for T → ∞, where
Vζ =

(
E
[
W∗

t
′VψW∗

t

])−1
.

Moreover, Vζ achieves the semi-parametric efficiency bound.

Proof. The consistency of the estimator directly follows the standard GMM argu-
ment.

To prove optimality, we first derive the asymptotic variance for an estimator
ζ̂W with a generic weighting matrix that solves:

bWT

(
ζ̂
W
)
≡ 1

T

∑
t

Wt

(
ζ̂
W
)′
ψt

(
ζ̂
W
)
= 0. (A.3)

The weighting scheme Wt can be a function of the given estimates and observed
variables (Ct, St). Denote DW

t = ∂Wt(z)
′ψt(z)

∂z
|z=ζ , we have

VW
ζ = E

[
DW
t

′]−1 E
[
W′

tψt (ζ)ψt (ζ)
′ Wt

]
E
[
DW
t

]−1 (A.4)

= E [D′
tWt]

−1 E
[
W′

tV
ψWt

]
E [DtW

′
t]
−1 (A.5)

where the second equation uses E
[
DW
t

]
= E

[
∂Wt(z)

′

∂z
ψt (ζ) +W′

t
∂ψt(z)
∂z

]
|z=ζ=

E [W′
tDt]. Plug in W∗ =

(
Vψ
)−1 E [Dt | Ct,St], we have: we have

VW ∗

ζ =
(
E
[
D′
t

(
Vψ
)−1

Dt

])−1

=
(
E
[
W∗′VψW∗])−1

. (A.6)

One can verify that (A.6) is also the semi-parametric efficiency bound shown by
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Chamberlain (1987). To see it more straightforwardly, we can show that for any
Wt ̸= W∗

t , ∆ ≡ VW
ζ −VW ∗

ζ is positive definite. The proof for the optimality gener-
ally follows the strategy of optimal instrument in conditional models, surveyed in
Newey (1993).

∆ ≡ E
[
D′
t

(
Vψ
)−1

Dt

]
− E [D′

tWt]E
[
W′

tV
ψWt

]−1 E [W′
tDt] .

Given Vψ is a positive definite diagonal matrix, it is convenient to factor Vψ into
Dt and Wt by defining:

D̃t =
(
Vψ
)− 1

2 Dt

W̃t =
(
Vψ
) 1

2 Wt.

Define Gt =

[
D̃′
t

W̃′
t

]
, and H′ = [ I −E

[
D̃′
tW̃t

]
E
[
W̃′

tW̃t

]
], we can show:

∆ = H′E [GtG
′
t]H.

Clearly, ≩ is positive semi-definite. ∆ = 0 when W̃t = E
[
D̃t | Ct,St

]
, or Wt =(

Vψ
)−1 E [Dt | Ct,St].

A.2 Asymptotic Properties when Common Factors are Included

With common factors, we proceed with the following steps.

0. (If needed: Use PCA to extract unobserved common factors from granular
data)

1. Regress qi,t and ptC
′
i,t on Xi,t to estimate β̂

q
and β̂

pC
.

2. Take the residual from the first step, qεi,t ≡ qi,t − X′
i,tβ̂

q
and pCε

i,t
′ = ptC

′
it −

X
′
i,tβ̂

pC
, and form the moment conditions:

ψεijt(z) ≡ ûεit (z) û
ε
jt (z) ≡

(
qεi,t + pCε

i,t
′z
) (
qεj,t + pCε

j,t
′z
)
.

Proceed with the optimal weighting matrix defined in (A.2) to estimate ζ̂ .
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3. Form the estimator for β as:

β̂ = β̂
q
+ β̂

pC
ζ̂.

The following proposition shows the asymptotic variance of ζ̂ and β̂.

Proposition A.1. The asymptotic variance formula for ζ̂ given by (A.6) still holds with
common factors. β̂ is a consistent estimator for β, and its asymptotic variance for β̂ is
given as:

V ar(β̂) =
1

T

[
V arOLS(β̂) + βpCV ar(ζ̂)βpC ′

]
(A.7)

V arOLS
(
β̂
)
=

(∑
i

E
[
Xi,tX

′
i,t

])−1(∑
i

E
[
Xi,tX

′
i,t

]
σ2
i

)(∑
i

E
[
Xi,tX

′
i,t

])−1

(A.8)

Proof. The proof follows Newey and McFadden (1994). The two-step estimator can
be formulated as a joint GMM estimator that solves:

1

T

∑
t

gt (b, z) ≡
1

T

∑
t

[
gOLSt (b)

W∗
t
′ψt(b, z)

]
= 0

where gOLS (b) is the moment condition for the first step of to identify (βq,βpC),
and the second block is optimal GIV moment conditions, taken OLS coefficients as
given. As the coefficients are just-identified, the solutions to the GMM estimation
are identical to the two-step estimator, and hence we can utilize properties of the
GMM estimator to study the asymptotic behaviors. Use θ to denote the vector of
(β, ζ) and θ̂ the corresponding estimator, we have:

√
T
(
θ̂ − θ

)
d→N

(
0, (Dg ′)

−1
(Vg) (Dg)−1

)
Dg = E

[
∂gt (θ)

∂θ

]
Vg = E

[
gt (θ)gt (θ)

′] .
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A crucial feature of these matrices is that they are block-diagonal:

Dg =

[
∂gOLS

t (b)

∂b
|b=β

E [W∗
t
′Dt]

]

Vg =

[
VOLS 0

0 W∗′VψW∗

]
.

To see Dg is diagonal, notice that the estimate for ζ does not enter the moment
conditions for the OLS step by the two-step nature, and

E
[
∂ψij,t (b, ζ)

∂b
|b=β

]
= E

[
∂ (uit −X′

it (b− β))
(
ujt −X′

jt (b− β)
)

∂b
|b=β

]
= 0.

Vg being diagonal is a result that the error term in gOLSt is linear in uit, while
the error terms of ψt are quadratic uitujt, so any linear combination between them
have a covariance of zero.

Due to the block-diagonal structure in Dg and Vg, the asymptotic variance of ζ̂
is not affected by the first step estimation.

To further derive the asymptotic variance of β̂, we use the Delta method:

V ar(β̂) =
[
I ζ

′]
V ar(

[
β̂
q
β̂
pC
]
)
[
I ζ

′]′
+ βpCV ar(ζ̂)βpC ′

where the first part is equivalent to asymptotic variance of the OLS estimator of
regressing qi,t + ptC

′
i,tζ on Xi,t, which is given in (A.8).

B Simulation

B.1 Statistical Power Comparison of GIVs

Figure B.1 compares the statistical power of the standard GIV in Gabaix and Koijen
(2024) vs. the optimal GIV in simulation. We simulate the model mirroring the
Treasury market in the flow of fund data. We assume there are 12 sectors with a
homogeneous elasticity of 1, and the supply is inelastic. The size distribution is
calibrated with the concentration in the Financial Accounts data, and we vary the
rate at which volatility decreases as the size of a sector increases. Other model
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parameters are reported in the note accompanyiing Figure B.1. As the volatility
decreases, the precision of standard GIV decays rapidly, while only mildly for the
optimal GIV. When the volatility-size ratio matches that in the Financial Accounts
data, the optimal GIV is twice as powerful as the standard GIV.

Figure B.1: Statistical power comparison: standard GIV vs. optimal GIV
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Note: Figure B.1 compares the statistical power of the standard GIV in Gabaix and Koijen (2024) vs.
the optimal GIV in simulation. Simulation parameters: number of sectors N = 12, T = 80 quarters,

no common factors, the excess HHI in the size distribution, h ≡
√∑

i S
2
i − 1

N = 0.5, elasticity
ζ = 1.0, and the level of the shock volatility is calibrated so that the σ2

p = 2.5%.

C Empirical Appendix

C.1 More on the Data

Financial Accounts data The main dataset we use for Treasury bonds and notes
holdings comes from Table FU.210 and L.210 of Federal Reserve’s Z.1 release.34

We use seasonally unadjusted transactions and holdings of Treasury notes and
bonds (labelled as “other Treasury securities”) whenever possible. Not all sectors
in the Z.1 release separately report holdings of bills, notes and bonds. Those that

34https://www.federalreserve.gov/apps/fof/FOFTables.aspx
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do not report this breakdown are typically small holders and are lumped into the
“other” category for estimation. There are, however, a number of large sectors
with no information on notes and bonds holdings directly available, including the
household sector (residual), pension funds and ETFs. In these cases, we assume
that their holdings are entirely in Treasury notes and bonds.

Country-level foreign holdings and bank-level holdings We use information
from the Treasury International Capital system (TIC) to compile country-level hold-
ings of long-term (bonds and notes) and short-term (bills) Treasury securities by
foreign investors. For short-term holdings, we source information included in the
banking liabilities survey that starts from February 2003. For notes and bonds, we
resort to the benchmark-consistent estimates put together by Bertaut and Tryon
(2007), Bertaut and Judson (2014), and Bertaut and Judson (2022). Gaps in the se-
ries are present from 2011Q3 to 2011Q4, when the TIC survey methodology is in
transition. We use the SLT1D table to fill in the blanks.

For individual U.S. bank holdings of Treasury notes and bonds, we use data
from FFIEC 031/041/051 filings, also known as the Call Reports. We download
the raw data from WRDS and take several steps to clean the dataset. First, as
WRDS data may contain FFIEC 002 filers (foreign branches), we identify and drop
all foreign branches in the data using the relationship files from the NIC informa-
tion system. Then, we largely follow the methodology of Financial Accounts to
extract information on Treasury holdings. Quarterly transaction figures are com-
puted by summing up three variables: RCON0211, RCON1286 and RCON3531
and taking the first difference. The market value of holdings are the sum of three
variables: RCON0213, RCON1287 and RCON3531.35 To get the breakdown be-
tween bills and other securities, we use an imputation method similar to Jansen,
Li, and Schmid (2024). With information on the residual maturity breakdown of
Treasury and agency securities (RCONA549 to RCONA554, excluding trading as-
sets,) we compute total holdings of Treasury and agency securities and impute

35Only large banks (FFIEC 031 filers) report information on Treasury securities held as trading
assets (RCON3531) and only fair values are reported. For Treasuries held as trading assets after
2018Q1, RCON3531 is very sparsely populated. We use RCFD3531 net of foreign office holdings as
the substitute. Unlike the financial account, who assumes that U.S. Treasuries comprise 3% of the
total trading book of foreign offices, we use historical realized values of RCFD3531 and RCON3531
to make the adjustment. Eventually, only two banks’ RCFD3531 numbers need to be adjusted. For
all other banks, we direct use RCFD3531 to impute missing RCON3531 numbers.
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notes and bonds holdings assuming that the share between bills and notes and
bonds are stable across the residual maturity bucket, and the data in the residual
maturity buckets above one year can well approximate notes and bonds holdings.

A challenge of working with country- and bank-level holdings is that our esti-
mation algorithm requires a balanced panel. A country or bank must consistently
hold non-zero amount of Treasury securities throughout our sample period to be
included individually in the data. Otherwise, they will be swept into an entity
labelled “all other countries” (TIC) or “all other banks” (call report), which aggre-
gate Treasury notes and bonds holdings of all country or bank entities that do not
always hold Treasuries during the sample period. By 2023, individual bank hold-
ing and country holding cover 80% and 90% of the total holdings reported in the
Z.1 release, respectively.36

Discrepancy The fact that not all investor sectors report Treasury notes and bonds
holdings and the lack of direct estimates of notes and bonds holdings and trans-
actions from the call report data would introduce valuation and coverage discrep-
ancies (see Figure C.3). We sweep the discrepancy component into the household
sector (the residual sector in the Z.1 methodology) in our baseline estimation.

Observed common factors Our baseline estimation makes use of the following
observed macro factors: the CBOE SP500 implied volatility index (VIX, FRED
ticker VIXCLS), the effective Federal Funds rate (FRED ticker FEDFUNDS), CPI
(FRED ticker CPIAUCSL), and the nominal broad dollar index (splicing goods
trade-weighted dollar index and goods-and-service trade-weighted dollar index,
FRED tickers DTWEXBGS and DTWEXB).

Sector classification and aggregation Table C.1 reports our aggregation of Finan-
cial Account sectors to categories for GMM estimation and for yield decomposi-
tion. For italicized sectors (U.S.-chartered banks and foreign investors), we use call

36More specifically, we require countries to hold non-zero Treasury bonds and notes throughout
from 2003Q1 to be included individually, and banks to have a non-zero position starting from
2001Q4 to be included. As countries and banks with consistently positive holdings tend to be
large, our country- and bank-level holding is highly representative of the entire market. For flows,
the correlation between individual bank aggregates and the Financial Accounts aggregates is 92%,
and for the TIC data, the correlation is 93%.
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report and TIC data to break down sector aggregates into individual bank/country
holdings.

C.2 Predictability of Policy Sectors

C.2.1 The Federal Reserve

Historically, the New York Fed’s Open Market Trading Desk (the Desk) used out-
right purchases or sales of Treasury securities as a tool to manage the supply of
bank reserves to maintain conditions consistent with the Federal funds target rate
set by the FOMC. Hence, small Treasury market flows were present in the NY Fed’s
System Open Market Account (SOMA) before 2008. The nature of these flows
changed drastically during the Global Financial Crisis. Since 2009 to 2024, the
Fed conducted 4 rounds of large-scale asset purchases including Treasuries and
GSE debt, commonly known as Quantitative Easings (QEs), which significantly
enlarged the SOMA portfolio in long-term Treasury securities.

Once activated, the scale of the QE operations can be predicted. At the start
of each round of QEs, The Federal Open Market Committee (FOMC) typically an-
nounces the total amount and the pace of the purchases to provide forward guid-
ance to market participants. Closely following the instructions of the FOMC, the
Desk at the New York Fed issues detailed schedule for future purchases typically
at a biweekly frequency. As the operations are prescheduled, they generally do not
respond to the contemporaneous market development.37

To control for the scheduled Fed purchases, we construct a sequence of antici-
pated purchases by the Fed in each quarter based on the FOMC announcement of
the Fed in the last quarter. For example, in March 18, 2009, the FOMC announced
it would purchase up to $300 billion of longer-term Treasury securities over the
next six months. The scheduled purchase by the Fed in Q2-3 would be $150 billion
each, until further policy changes by the FOMC.

Table C.2 reports the anticipated purchases versus the actual purchases of the
Fed during active QE periods. When the QE is not pre-scheduled in that quarter

37One exception is the initial stage of the QE in response to the COVID pandemic. Due to the ex-
tremity of the macroeconomic and financial conditions, the FOMC announced that it “will continue
to purchase Treasury securities and agency mortgage-backed securities in the amounts needed to
support smooth market functioning and effective transmission of monetary policy to broader fi-
nancial conditions”, without specifying the duration and the total amount.
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(typically at the start of the QEs), we use lagged purchases by the Fed from the
previous quarter as the expected purchase.38 As investors may use more informa-
tion than the FOMC announcements alone, we lean towards conservative when
setting the anticipated purchases. For example, during the exit of the QE3, even
though the FOMC announcement of reducing purchases are not pre-scheduled in
earlier quarters, as it follows a predictable patterns and well-anticipated by in-
vestors, we consider these changes are “scheduled”. Outside of the QE periods,
we treat all realized, contemporaneous purchases as anticipated, as they are either
due to rollovers of maturing Treasuries or reserve management purposes. As the
scale of these outright purchases are small, alternative treatments have little effects
on our results. Figure C.1 plots the path of the Fed’s flows together with the one-
quarter-ahead anticipated path sequence. As shown in the plot, for most quarters,
the realized purchases closely track the anticipated purchases. The major devia-
tions occur on the entry and exit of the QE programs. Our estimates for the Fed’s
sensitivity to prices and to macro factors mainly reflect the policy consideration
during episodes in which Fed deviates from the anticipated schedule.

38Alternatively, we can also estimate an AR process of the Fed purchase outside of QE and use
that as predictor. The results are not sensitive to the treatment as the deviation of the QE purchase
from the regular outright operations are an order of magnitude larger.
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Figure C.1: Case Study: QE Entry and Exit between 2009-2010

Year
2004-Q1 2008-Q1 2012-Q1 2016-Q1 2020-Q1
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Note: Figure C.1 plots the actual purchases (normalized by total Fed holdings) of U.S. Treasury
notes and bonds against the constructed one-quarter-ahead anticipated Fed purchase measure in
green. The anticipated path is generated by combining the actual Fed purchase path before 2009
with the pre-announced purchase schedule by the New York Fed starting from the beginning of the
QE operation.

As a further illustration, in Figure C.2 we focus on the end of the QE1 in 2009Q3
and the start of QE2 in 2010Q4. The original schedule for the first round of Trea-
sury purchases ends at 2009Q3. In that quarter, the FOMC meetings decided to
change the schedule and slow down the purchase and extend to Q4 in order to
“promote a smooth transition in markets as these purchases of Treasury securities
are completed”. This results in a negative deviation from the anticipated path. In
the figure, we plot the path of the price changes of the Treasury notes and bonds
(the dash line), and the price change predicted using other sectors’ demand shocks
(the solid line). As shown in the price path, the quarter in which they decided
to slow down the purchase is the one with the largest Treasury price appreciation
in the entire QE1 episode. Similarly, the start of the QE2 also coincides with the
quarter that saw the largest Treasury price depreciation.
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Figure C.2: Case Study: QE Entry and Exit between 2009-2010

2009-Q1 2009-Q3 2010-Q1 2010-Q3 2011-Q1
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Note: Figure C.2 traces Treasury price changes from 2009 to 2011, covering the end of QE1 and
the start of QE2. The path of actual Treasury price changes (dashed line) is plotted against the
instrumented price changes, predicted using the size-weighted granular shocks extracted from the
GMM estimation.

C.3 Robustness of Elasticity Estimation

Table C.3 demonstrate the robustness of our price elasticity estimation to alterna-
tive samples, controls, or dependent variables. Table C.4 shows that our finding
remains robust if we remove any sector from the construction of moment condi-
tions and reestimate the model.

C.4 Additional Tables and Figures

Table C.5 reports the full set of estimated parameters from the baseline specifica-
tion.
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Figure C.3: Investor composition of U.S. Treasury notes and bonds
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Note: Figure C.3 plots the investor base of U.S. Treasury notes and bonds. We organized the holders
of the U.S. Treasury identified in the Financial Account data into 10 sectors based on the classifi-
cation reported in Section C.1 in the Appendix. Our procedure for calculating Treasury notes and
bonds holdings from raw Financial Account data introduces a “discrepancy” component due to
valuation differences and imputed holdings for sectors that do not separately report bill holdings.
The market share plotted refers to each sector’s market value of holdings as % of the total market
value of the Treasury notes and bonds outstanding.
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Table C.1: Mapping from Sectors to Groups

Sector Category (estimation) Category (decomposition)
Banks in U.S.-affiliated areas Banks US Financial Institution
Foreign banking offices in the
U.S.

Banks US Financial Institution

U.S.-chartered depository
institutions

Banks US Financial Institution

Exchange-traded funds ETF US Financial Institution
Monetary authority Fed Fed
Households and nonprofit
organizations

Households US Other

Property-casualty insurance
companies

Insurance US Financial Institution

Life insurance companies Insurance US Financial Institution
Money market funds Other US Financial Institution
Closed-end funds Mutual Funds US Financial Institution
Mutual funds Mutual Funds US Financial Institution
Nonfinancial corporate business Other US Other
Nonfinancial noncorporate
business

Other US Other

State and local governments Other US Other
Government-sponsored
enterprises

Other US Other

Credit unions Other US Other
Other financial business Other US Other
Issuers of asset-backed
securities

Other US Other

Holding companies Other US Other
State and local government
employee defined benefit
retirement funds

Pension US Financial Institution

Federal government defined
contribution retirement funds

Pension US Financial Institution

Federal government defined
benefit retirement funds

Pension US Financial Institution

Private defined contribution
pension funds

Pension US Financial Institution

Private defined benefit pension
funds

Pension US Financial Institution

Rest of the world Rest of World Rest of World
Security brokers and dealers Security brokers and dealers US Financial Institution
Supply Supply Supply
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Table C.3: Price elasticity by sector: Alternative Specifications

Sector Baseline 5 factors 1970-2023 Including Bills

Aggregate 1.04 1.09 1.3 2.01
(0.8, 1.27) (0.83, 1.35) (1.11, 1.5) (1.25, 2.77)

Other -0.27 -0.2 0.19 0.48
(-0.5, -0.04) (-0.42, 0.03) (0.02, 0.36) (0.17, 0.78)

Households 10.45 11.59 10.5 4.42
(5.63, 15.26) (6.16, 17.01) (7.29, 13.7) (0.98, 7.86)

Pension 0.11 0.11 -0.23 0.12
(-0.05, 0.27) (-0.05, 0.28) (-0.39, -0.07) (-0.11, 0.35)

Insurance 0.62 0.58 -0.67 0.15
(0.32, 0.93) (0.27, 0.89) (-0.93, -0.41) (-0.37, 0.67)

Mutual Funds 0.56 0.53 0.47 0.63
(0.09, 1.02) (0.05, 1.01) (0.23, 0.72) (-0.02, 1.27)

ETF -0.08 -0.17 0.23 -0.39
(-0.44, 0.27) (-0.54, 0.19) (0.04, 0.42) (-0.9, 0.13)

Dealers 5.97 6.09 -1.47 -0.72
(-2.82, 14.76) (-3.09, 15.27) (-8.37, 5.43) (-11.69, 10.26)

Fed 0.39 0.45 0.03 0.15
(0.1, 0.67) (0.16, 0.74) (-0.06, 0.13) (-0.22, 0.51)

Banks 0.67 0.49 1.0 0.77
(0.5, 0.85) (0.31, 0.66) (0.51, 1.49) (0.57, 0.98)

RoW 0.43 0.41 0.39 0.6
(0.29, 0.57) (0.26, 0.55) (0.27, 0.52) (0.39, 0.81)

Supply 0.05 0.04 0.26 1.26
(-0.02, 0.12) (-0.03, 0.11) (0.18, 0.33) (0.32, 2.2)

MMF 2.45
(0.41, 4.48)

Note: Table C.3 demonstrates the robustness of our price elasticity estimation by augmenting the
model with 5 estimated principal components from granular Treasury holding data for U.S. banks
and foreign investors (column 2), by extending the sample period to 1970–2023 and estimating the
model only on Financial Account data (column 3), and by including Treasury bills in the estimation
(column 4). 95% confidence intervals are report based on standard errors derived in Theorem 2.
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Figure C.4: Sectoral decomposition of latent demand and supply shocks
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Note: Figure C.4 further breaks down the contribution of latent demand and supply shocks (plot-
ted in Figure 7) to the investor group level. We report average yield contribution per quarter in
percentage points. The width of the bars reflects the length of the corresponding episode.

Figure C.5: Foreign holdings of Treasury notes and bonds: Official holdings and
China

(a) Official vs. Private investors
(level)

(b) China’s share (% total market
value)

Note: Figure C.5 provides additional context for understanding the influence of foreign demand
on U.S. Treasury yields. Panel (a) plots the evolution of private and official holding of U.S. Treasury
notes and bonds. Panel (b) specializes to China and plot its market share evolution over the sample
period.
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