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Abstract

This paper shows that accounting for foreign investor base differences helps ex-
plain the heterogeneous influence of the Global Financial Cycle on the borrowing cost
of emerging market governments. Using security-level holding data and a quantita-
tive model featuring heterogeneous investors, debt default risk and global financial
shocks, I investigate the role of investor demand and asset attributes in the transmis-
sion of global shocks. I document that facing global financial tightening, sovereign
bonds with a higher institutional ownership by foreign investment funds suffer a
larger price drop. By estimating the yield elasticity of demand for long-term for-
eign investors, such as banks, insurers and pension funds, I find that their shock-
absorbing capacity is generally low and depends on bond characteristics such as
currency denomination. My quantitative model featuring endogenous amplification
of financial shocks is able to capture the empirical patterns. Counterfactual analyses
suggest that encouraging the participation of long-term foreign investors or limiting
the risk exposure of investment funds could substantially reduce the volatility of
yields on emerging markets sovereign debt.
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1 Introduction

Emerging market economies experience frequent surges and stops of capital inflow,
channeled through an increasingly complex set of global intermediaries. Meanwhile,
the prices of emerging market assets strongly comove with global risk factors, a phe-
nomenon labelled the “Global Financial Cycle.” (Rey, 2013)1

This paper connects these two observations through a new fact – the sensitivity of
sovereign bond yield spreads to global risk factors is correlated with whether the liabil-
ities are held primarily by foreign investment funds, insurance companies and pension
funds (ICPFs), or banks, highlighting the potential role that investor composition plays
in driving or amplifying the Global Financial Cycle. To understand the mechanism
behind this pattern, I develop a quantitative equilibrium model of the sovereign debt
market with heterogeneous investors, disciplined by a set of novel empirical facts ob-
tained from a micro dataset of bond-level positions reported by global investment funds
and Germany-based financial institutions. The model replicates the mapping between
investor heterogeneity and sensitivity to global risk factors, and quantifies the interac-
tion between asset attributes and investor composition. I also use the model to explore
how policy measures, such as those that limit bank and investment fund exposure to
sovereign risk, would impact the response of sovereign yield spreads to global shocks.

I start by documenting a strong correlation at the macro level. A country’s sovereign
yield spread is more sensitive to shifts in global risk factors when the share of its ex-
ternal liabilities or its government debt held by foreign non-banks increases relative to
foreign banks. Among foreign holdings, the sensitivity is increasing in the share of
investment funds, including mutual funds and exchange-traded funds (ETFs). Canon-
ical frameworks with a single representative lender are unable to capture these salient
facts or explore the implications of these correlations. Meanwhile, the role of foreign
investor composition in the transmission of the Global Financial Cycle could depend
on the interaction between investors’ heterogeneity and the fundamental attributes of
debtor countries’ liabilities that attract a particular type of investor. I unpack this rela-
tionship through the lens of a quantitative framework informed by micro data.

Using a novel security-level, high-frequency dataset with substantial sectoral cover-
age of foreign investor base for more than 2400 emerging market long-term sovereign

1Longstaff et al. (2011) show that the first principal component of emerging market credit default
swap spreads is closely related to indicators of global risk factors. Early contributions on the influence
of global variables also include Calvo et al. (1996), Mauro et al. (2002), and González-Rozada and Levy
Yeyati (2008).
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debt securities, I establish a number of findings. First, even after controlling for time-
varying issuer fundamentals through issuer→time fixed effects, I find that banks, insur-
ers and pension funds are more likely to hold home currency (Euro-denominated) assets.
Insurers and pension funds additionally tilt their emerging market portfolio towards se-
curities with higher credit quality. Second, conditional on bond and issuer→time fixed
effects that absorb the effect of investors’ portfolio preferences and time-varying issuer
characteristics on bond yields, emerging market sovereign bonds’ yield sensitivity to
shifts in the VIX index–a widely used proxy for global risk factors–increases when a
larger fraction of the bond is held by investment funds prior to the shifts, and decreases
with the ex ante share held by banks, insurers and pension funds. A 10 percentage
point increase in the share held by investment funds correspond to a 29% increase in
the bond yield sensitivity. I further show that this result is unlikely to be affected by
concerns on imperfect data coverage, selection on important bond characteristics such
as currency denomination and maturity, and reverse causality, such as investment funds’
voluntary exposure to global volatility risks. On the quantity side, I show that during
important episodes of heightened global financial risk, such as the Taper Tantrum and
the COVID pandemic, banks, insurers and pension funds respond by buying emerg-
ing market sovereign debt, while investment funds, driven by strong capital redemption
pressure, become net sellers.

The granular data also allows me to estimate the yield semi-elasticity of demand
associated with stable, long-term investors such as banks, insurers and pension funds.
This statistic is a barometer of the capacity of these investors to absorb adverse global
financial shocks and is thus a key statistic governing the sensitivity of yields to shocks.
For identification, I construct instrumental variables based on capital flows in and out of
emerging market-focused mutual funds that move prices and shift the residual supply
curve faced by long-term investors. The first instrument projects surprise fund flows
onto each bond using past portfolio weights, in the spirit of Lou (2012) and van der
Beck (2022). The second instrument exploits granularity of the fund size distribution
and extracts idiosyncratic flows in and out of large mutual funds in the spirit of Gabaix
and Koijen (2023). Using both approaches, I find that a one percentage point increase
in the annualized yield of Euro-denominated sovereign bonds expands the demand of
long-term investors by 29 percent, indicating a generally inelastic demand. I also find
evidence that the demand for Euro-denominated bonds is more elastic than that for
bonds denominated in other currencies, reflecting the close connection between favorable
asset characteristics and the shock absorption capacity of long-term investors.

3



Informed by my empirical observations, I construct a quantitative model of the
sovereign debt market featuring heterogeneous investors, stochastic debt default risk
and global financial shocks to reproduce the empirical patterns and analyze the impact
of foreign creditors’ shifting demand structure on emerging market sovereign spreads.
Two types of investors–investment funds and long-term investors–hold a risky perpetu-
ity, whose value is subject to random arrivals of haircuts. Consistent with data, long-term
investors have stable, downward sloping asset demand that limits their risk exposure to
issuer default.2 Meanwhile, motivated by my empirical findings and earlier work doc-
umenting the close relationship between open-ended investment fund flows and global
risk (Jotikasthira et al., 2012), I assume that global financial tightening in my model in-
duces capital redemption from investment funds. The outflows erode their risk-bearing
capacity and endogenously depresses bond prices. The endogenous interaction between
asset liquidation and wealth revaluation further amplifies the adverse impact of a tight-
ening Global Financial Cycle. I calibrate the demand function of the long-term investors
leveraging my empirical estimates, and other parameters to match key moments related
to emerging market sovereign borrowing. To solve the model, I develop an algorithm
based on finite differences that tackles multiple state variables, non-trivial boundary
conditions and jump risk in continuous time.

The model matches empirical observations in three major ways. First, consistent with
Longstaff et al.’s (2011), the financial factor explains 60 percent of the variation in the
price of the risky bond in the model. Second, the model-implied relationship between
investor composition and sovereign yield sensitivity to wealth shocks is in line with the
data. When the share of the risky perpetuity held by investment funds expands by
10% relative to the average, the sensitivity of the bond yield to investment fund wealth
shocks increases by 19%. Third, as long-term investors’ demand elasticity vary according
to default risk in the model, it can generate substantial cross-country differences in the
sensitivity of sovereign yields to financial shocks. I am thus able to use the model as
a laboratory to quantitatively evaluate the role of alternative configurations of investor
base and derive policy implications. Among the takeaways, I highlight that financial
regulations that make long-term investors more accommodative to fundamental risks,
such as Solvency II, could reduce the volatility of sovereign borrowing costs and limit
the endogenous amplification of the Global Financial Cycle particularly for countries
more prone to default.

2The optimizing foundation of long-term investors, sketched in Appendix I.B.2, attributes this prefer-
ence to risk-based capital requirements and risk management concerns.
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Related literature My paper contributes to three strands of literature. First, this paper
is among the few papers that provide a quantitative framework to analyze the trans-
mission of the Global Financial Cycle. Since Miranda-Agrippino and Rey (2020), there
have been several modeling attempts to study the underlying mechanisms contributing
to global factors in asset prices (Kekre and Lenel, 2021) and capital flow (Davis and
van Wincoop, 2022).3 Bai et al. (2025) jointly study global and local prices of risk and
the time-varying the influence of Global Financial Cycle on emerging market sovereign
spreads. Akıncı et al. (2022), Gilchrist et al. (2022) and Morelli et al. (2022) highlight the
role of intermediaries and financial frictions in propagating shocks across countries.4 In
comparison, I incorporate empirically identified moments into a model of inelastic asset
markets and habitat investors (Vayanos and Vila, 2021). Like Xiong (2001) and Kekre
et al. (2023), my model highlights the endogenous revaluation of financial intermedi-
aries’ wealth as an important shock amplification channel.

Second, my paper speaks to the empirical literature, starting from the seminal con-
tribution of Calvo et al. (1993), that examines the relationship between emerging mar-
ket sovereign risk and global financial risk, and the associated transmission channels.5

Longstaff et al. (2011) and Tourre (2017) show that a single global factor can account for
large variation in emerging market sovereign spreads. di Giovanni et al. (2022) provide
direct causal evidence on the transmission of global financial shocks to Turkey’s bor-
rowing cost. My paper places these findings in the intermediary asset pricing literature
through a model with a realistic asset demand structure informed by novel micro data,
and use the model to conduct counterfactual analyses.6

My paper is also closely related to the emerging “macro-structure” literature (Had-
dad and Muir, 2025) dissecting the implications of investor base heterogeneity in a global
context. Coppola (2022) analyzes investor base of corporate bond in advanced economies

3At a broader level, the literature studies the equilibrium asset pricing implication of investor het-
erogeneity in various contexts. Recent theoretical contributions include Pavlova and Rigobon (2008),
Chabakauri (2013), Coimbra (2020), Coimbra and Rey (2024) and Kargar (2021). Cella et al. (2013) and
Ben-David et al. (2021a) relate investor heterogeneity to the volatility of stocks. Siani (2023) focuses on the
segmentation between primary and secondary markets, and Kremens (2024) connects currency risk to the
positioning of hedge funds in the futures market.

4In related works, Oskolkov (2023) models the risk-bearing capacity of global banks through ambiguity
aversion while Fu (2023) focuses on belief heterogeneity in generating risk-driven capital flow.

5Borri and Verdelhan (2011) and Lizarazo (2013) model the global factor in sovereign debt prices by
introducing risk-averse investors to standard sovereign default problems. See Kalemli-Özcan (2019) and
Gilchrist et al. (2022) for recent empirical attempts to identify this linkage via VAR or local projections.

6The estimation of long-term investors’ demand elasticity in my paper echoes a fast-growing literature
on demand system asset pricing (Koijen and Yogo, 2019; Koijen et al., 2021, among others, further reviewed
in Section 4.) My innovation is to incorporate the demand elasticity estimate into the calibration of a fully-
specified model to perform quantitative analysis.
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and shows that corporate bonds held by insurance companies could fend off adverse fi-
nancial shocks. Converse et al. (2023) show that exchange-traded funds (ETFs) amplify
emerging markets’ sensitivity to the Global Financial Cycle.7 My empirical estimation
and quantitative model, on the other hand, emphasize the importance of understand-
ing the equilibrium determination of asset prices through the interaction of the entire
investor base. In this way, my paper is closest to Fang et al. (2022), who analyze investor
demand for sovereign debt using a demand system approach based on a low-frequency
country-level database of sovereign debt ownership split between banks and non-banks,
and Moretti et al. (2024), who exploits emerging market bond index rebalancing to iden-
tify market multipliers. By focusing on investment funds prone to risk-sensitive redemp-
tion, and banks, insurers and pension funds with a stable demand structure, my paper
splits investors into more detailed and economically interpretable categories. Faia et al.
(2022) and Bergant et al. (2023) analyze various investors’ demand for emerging market
securities and its association with bond characteristics. Relative to these papers, I esti-
mate the demand equation of long-term investors and examine counterfactual demand
structures in my model to derive the asset pricing implication of investor heterogeneity
for emerging markets.8

The paper proceeds as follows. Section 2 motivates the paper with a set of aggregate
stylized facts that highlight the potential role of foreign investor composition. Section
3 reports the results from my empirical analysis using micro data and discuss potential
economic mechanisms. Section 4 provides estimates of the demand elasticity of long-
term investors. I introduce the quantitative model in Section 5 and my counterfactual
exercises in Section 6. Section 7 concludes. The Online Appendix contains a set of
supplementary results and additional information.

7In the emerging market context, numerous contributions center around open-ended mutual funds
and benchmark investors. Most focus on quantities instead of prices and do not provide an analytical
framework. See International Monetary Fund (2014, 2021); Raddatz et al. (2017); Ng et al. (2019); Arslanalp
et al. (2020); Chari et al. (2020, 2022) and Bush and Cañón (2025). Forbes et al. (2023) analyze the role of
non-bank financial institutions in driving the dynamics of CDS spread during COVID-19.

8Cerutti et al. (2019) and Moro and Schiavone (2022) use aggregate data on portfolio investment of
different investor sectors to study each investor type’s sensitivity to the Global Financial Cycle (also see
Faias and Ferreira (2017)). My analysis of the characteristics of investors’ portfolio holding echoes recent
work on home currency bias (Maggiori et al., 2020; Boermans and Burger, 2023) that belongs to the growing
literature using granular data on security holdings to study international capital allocation (Boermans and
Vermeulen, 2020; Beck et al., 2023) and frictions (Bacchetta et al., 2023).
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2 Investor base and global risk sensitivity: Relationship
at the aggregate level

My analysis is motivated by the following cross-country pattern from aggregate data
spanning 2004 to 2019: sovereign yield spreads of emerging markets are more sensitive
to shifts in global risk appetite when the share of foreign non-bank bond holders is high.
For each major emerging market economy included in Arslanalp and Tsuda’s (2014)
dataset, I estimate its sovereign risk-global risk sensitivity, defined as the coefficient βi

from the following time-series regression for each country:

∆Spread
i,t = αi + βi(100 → ∆ log VIXt) + εi∆FedFundst + ϱi,t (1)

where Spread
i,t corresponds to the yield spread of sovereign bonds issued by country i

at month t over a risk-free benchmark. Measured in basis points, the sovereign spread
for each country is calculated from U.S. dollar-denominated sovereign bonds included
in the JPMorgan EMBI+ index. For my baseline analysis throughout the paper, I use the
implied volatility of the S&P 500 (CBOE VIX Index) as the proxy for the global risk factor,
following a large literature.9 I include U.S. policy interest rate as a control to separate
the impact of global risk from that of center-country monetary policy. Estimated from
monthly data, the spread sensitivity in (1) captures the high-frequency comovement
between secondary-market prices of country-i’s sovereign debt and global financial con-
ditions. This is a relevant metric, as the linkage between secondary-market yields and
the actual borrowing cost is strong, given emerging markets’ tendency to borrow short
term and to face more frequent need for debt rollover than advanced economies (Broner
et al., 2013).10

Emerging market economies are differentially exposed to the Global Financial Cycle,
as the estimated country-specific βi indicates. Both panels of Figure 1 plot the estimated
sensitivity of sovereign yield spreads to log changes in the VIX index (y-axis). On av-
erage, a 1 percent increase in the VIX index corresponds to 0.4 basis point widening of
the yield spread. From the most exposed country (Argentina) to the least exposed issuer

9See Kalemli-Özcan (2019), for instance. The pattern remains robust when I use alternative proxies
for global risk, including the Bertaut et al. (2023) risk aversion index. The pattern remains robust when I
extend the sample to small emerging and frontier economies included in the JPMorgan EMBI+ index.

10Disclosure of bond auction results from Indonesia shows that investor types in the primary market
resemble those in my analysis. Meanwhile, yields from re-opening auctions closely track secondary mar-
ket prices of the same bond the day before the auction, justifying the use of secondary market yields in
my analysis.
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(China), the estimated sensitivity differs by a factor of 13.4. Notably, country risk cannot
fully explain these different sensitivities. Countries with similar credit standing, such as
Indonesia and Egypt, differ widely in their estimated βs.
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Figure 1: Sovereign spread-global risk β and investor composition: Aggregate patterns

Source: Arslanalp and Tsuda (2014); Lane and Milesi-Ferretti (2017); Coppola et al. (2021), BIS Locational
Banking Statistics, IMF CPIS, World Bank Global Economic Monitor, FRED, and own calculations

Note: Figure 1 illustrates the cross-country pattern between foreign non-banks’ presence through portfolio investment and
emerging market economies’ sensitivity to shifts in global risk factors. In both panels, the y-axis corresponds to time-series
regression coefficients of monthly changes in sovereign bond spreads (proxied by JPMorgan EMBI spread) on monthly changes in
the log of CBOE VIX index, controlling for changes in U.S. monetary policy (see (1)). In Panel (a), the x-axis corresponds to foreign
non-banks’ share in total non-FDI external liabilities averaged over 2004–2019. The x-axis of Panel (b) plots foreign investment fund
holding as a share of total cross-border long-term debt holding of foreign investors, calculated using CPIS data, adjusted using the
nationality-based measure based on the restatement matrix provided by Coppola et al. (2021), and averaged over 2013–2019. Panel
(b) drops Argentina and Ukraine due to sovereign default dominating the post-2013 sample, and Bulgaria due to insufficient
coverage of the EMBI data.

Figure 1 shows that the sensitivity of sovereign yield spreads to global risk is strongly
correlated with foreign investor composition, measured in various ways. Panel (a) plots
the β coefficients (y-axis) against the share of foreign non-banks’ holdings relative to the
total external liabilities of each country, obtained from subtracting total cross-border
bank claims reported in the BIS Locational Banking Statistics from Lane and Milesi-
Ferretti’s (2017) international investment position.11 This positive correlation cannot be
fully explained by countries experiencing severe repayment issues or cherry-picking par-
ticular measures of investor composition or sovereign risk.12 Using IMF’s Coordinated
Portfolio Investment Survey (CPIS) and the nationality-based restatement provided by
Coppola et al. (2021) spanning 2013–2019, I further show in Panel (b) that a stronger

11For each country, the foreign investor composition in Panel (a) is an average measure over 2004–2019.
12The pattern remains robust if I use credit default swap spread as the measure for sovereign risk (see

Figure I.A.1 in the Online Appendix,) or the foreign non-bank holding share in the sovereign bond market,
calculated from Arslanalp and Tsuda’s (2014) dataset, as the measure for foreign investor base.
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presence of foreign investment funds relative to other foreign investors, such as banks,
insurance companies and pension funds, corresponds to higher sensitivity of sovereign
spread to changes in the VIX index. This finding motivates my subsequent grouping
of investors in Section 3 and beyond when I investigate the role of investor base in the
micro data.

Issuers’ fundamental characteristics could exert a large influence on their investor
composition, as institutions with varying degrees of risk appetite sort into different
countries. Yet Table I.A.5 in the Online Appendix shows that the significant associa-
tion between measures of investor base and yield sensitivity to VIX innovations remains
robust after accounting for important borrower characteristics, such as the level of finan-
cial development, overall debt burden, country size and capital account openness, and
above all, the country’s credit standing. Measures of investor base by themselves could
explain 22–30% of the cross-country variations in yield sensitivity.

3 The role of investor base: Evidence from granular data

Motivated by the findings in the previous section, I utilize micro-level data on securities
holdings along with rich information on issuer fundamentals, sectors of bond hold-
ers and bond attributes, in an attempt to disentangle the two-way interaction between
lenders and borrowers in shaping the impact of Global Financial Cycle on bond yields.
The data’s granular nature allows me to conduct a similar exercise at the bond level,
and to introduce a rich set of fixed effects so as to isolate the role of investor demand in
propagating global financial shocks.

3.1 Data

My main micro-level dataset comes from the Securities Holdings Statistics Base plus
(SHS-Base plus) database (Blaschke et al., 2022) compiled by Deutsche Bundesbank.13

The database is a security-level, full census of all financial institutions domiciled in Ger-
many. Domestic banks report all assets held on their own balance sheets and those
held in safe custody on behalf of their customers, regardless of the ultimate investors’
countries of origin. For convenience, I call investors recorded in the SHS-Base plus data
as “Germany-based” investors. For each security identified by its International Securi-

13DOI: 10.12757/SHSBaseplus.05122212.
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ties Identification Number (ISIN), information is available on the face value and market
value and the sector classification of its holders.

I expand my investor base coverage using portfolio holdings data from Morningstar
on more than 1200 investment funds (mutual funds and ETFs) domiciled in important
offshore financial centers (Luxembourg and Ireland) and United States, that invest pri-
marily in emerging markets. The Morningstar sample of funds report a total asset under
management exceeding $600 billion as of June 2021. I merge the holdings data with
the near-universe of emerging market sovereign bond issuances from 2005 to 2021, with
information on bond characteristics sourced from Bloomberg and Refinitiv. My final,
merged dataset contains 2499 bonds, of which over 900 are issued by emerging market
governments in Eastern and Southern Europe and over 2000 have substantial data cover-
age on prices. My regression analysis uses monthly data available from the end of 2012
to June 2021, but I also report the aggregate data covering earlier years if possible.

Let Bi,s,t(n) denote the total face value of bond n issued by country i held by sector s

at time t. I measure the investor composition of a bond n by calculating

θi,s,t(n) =
Bi,s,t(n)

Amount Outstanding
i,t(n)

(2)

for each sector s ↑ S ↓ {Bank, ICPF, Investment Fund}. I also calculate the aggregate
share held by long-term investors. θi,Bank+ICPF,t(n). Tables I.A.1 to I.A.3 of the Online
Appendix report average investor composition covered in my dataset at the bond level,
along with summary statistics on other important bond- and issuer-level characteris-
tics. My dataset has a decent coverage of external issuances (an average of 15% of the
amount outstanding), defined as bonds issued outside the domestic markets, and Euro-
denominated bonds (18% on average).

Using this micro-level dataset comes with both advantages and challenges. The ad-
vantages include a wide security and sector coverage, high frequency (monthly), and the
reporting of face values free from valuation effects. The major challenge, on the other
hand, is that the data may not recover the entire investor base even after combining
multiple data sources. While the issue is less relevant when analyzing the nature and
determinants of investor demand, it could be more concerning when I relate investor
composition to bond price variation. I provide a number of remedies to alleviate the
concern over sample representativeness and measurement issues. First, in analyses con-
necting investor base to bond yield sensitivity (such as Table 1 in the following section),
I focus on 27 EM European issuers, as Germany is among the largest creditors to these
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countries.14 Second, I will show that my findings in Section 3.3 remain robust when I
replace the denominator in (2) with the total measured amount held by the investor set
S , so that θ will have a “relative share” interpretation.

3.2 The variation of investor bases over time and across bonds

Before relating investor composition to bond price sensitivity to the Global Financial
Cycle using the granular dataset, I delineate the drivers of investor bases to shed light
on the variations in the data that I am going to exploit in the empirical exercise.

Cross-sectional determinants Figure 2 provides a snapshot of Germany-based investors’
EM sovereign bond portfolio at the end of 2020. The breakdown by important bond
characteristics reveals important heterogeneity. While mutual funds invest broadly in
EM sovereign bond, with a sizable local-currency and dollar-denominated portfolio of
various ratings and maturity, insurers and pension funds almost entirely specialize in
Euro-denominated, investment-grade bonds. The share of long-term bonds with a resid-
ual maturity larger than 10 years is largest for insurers and pension funds. Banks also
have a portfolio tilted towards safer, Euro-denominated bond, albeit to a lesser extent.

To augment Figure 2, I estimate a linear probability model on Germany-based in-
vestors’ monthly holdings, regressing an indicator variable of whether a bond is held by
a particular sector to a larger set of bond characteristics, while simultaneously control-
ling for time-varying issuer characteristics through the use of issuer→time fixed effect.
The universe of bonds included in the estimation are those that are held by at least one
major sector in S . With the issuer-time fixed effect, the comparison is among bonds
issued by the same sovereign government and held by Germany investors.

Table I.A.6 in the Online Appendix reports the estimation results. Consistent with
Figure 2, it shows that the propensity to hold bonds with a particular bond characteristic
varies widely across investors, while being stable across specifications with different
sets of fixed effects. For investment funds, maturity and currency denomination do

14The 27 countries classified as EM European countries comprise 950 bonds over my sample period
matched to SHS-Base plus. These countries include Albania, Armenia, Azerbaijan, Belarus, Bulgaria,
Bosnia and Herzegovina, Croatia, Czech Republic, Cyprus, Estonia, Georgia, Hungary, Lithuania, Latvia,
Macedonia, Moldova, Montenegro, Malta, Poland, Romania, Serbia, Russia, Slovenia, Slovak Republic,
Tajikistan, Turkey, and Uzbekistan. The rest of the country sample includes Argentina, Brazil, Chile, China,
Colombia, Costa Rica, Dominican Republic, Egypt, Indonesia, India, Jamaica, Kazakhstan, Lebanon, Sri
Lanka, Morocco, Mexico, Malaysia, Peru, Philippines, Pakistan, Thailand, Ukraine, Uruguay, Venezuela,
Vietnam and South Africa.
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Figure 2: EM sovereign bond held by Germany-based investors (end-2020), face value
in Euros, by sector of holders and bond characteristics

Source: Research Data and Service Centre (RDSC) of the Deutsche Bundesbank, Securities Holdings
Statistics (SHS-Base plus), December 2020, own calculations.

Note: Figure 2 reports the breakdown of sector-specific EM sovereign bond holdings by bond characteristics (credit rating, currency
denomination and residual maturity). “IG” refers to investment grade. “HY” corresponds to high-yield (non-IG) bonds.

not explain their portfolio holding patterns at the extensive margin. On the other hand,
long-term investors exhibit strong propensities to hold bonds denominated in their home
currency (Euro). Insurers and pension funds are 29 times more likely than investment
funds to hold a Euro-denominated bond, and 3 times more likely than banks. Banks are
more likely to hold bonds with a shorter duration. With less demanding fixed effects,
I can also estimate the degree of sorting into time-varying issuer characteristics such
as credit ratings. In particular, insurers and pension funds are 10 percent more likely
to hold a bond if the issuer is rated at investment grade. Overall, the R

2 associated
with investment funds are one half of that associated with insurers and pension funds,
indicating that bond characteristics do less well in explaining investment funds’ decision
to hold a particular bond.

In Section I.A.1 of the Online Appendix, I report average measures of a larger set
of bond characteristics held by each sector. Table I.A.2 shows that on average, bonds
held by investment funds tend to have higher yield, larger amount outstanding, and pay
higher coupons. Meanwhile, bonds held by insurers and pension funds have the lowest
average yields among the three holder sectors, and have a lower bid-ask spread.
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Time-series evolution Figure 3, Panel (a) traces the evolution of aggregate EM sovereign
bond holdings by major Germany-based investor sectors since 2010. Throughout my
sample period, bank holdings have been in decline until 2019, while investment funds,
insurers and pension funds have been expanding their holdings. Given ICPFs’ prefer-
ence for high-grade bonds and the overall low interest rate environment over my sample
period, this pattern likely reflects reach-for-yield motives and the overall improvement
in issuer fundamentals over the past decade. Despite the underlying structural shifts,
the overall investor base remains diverse.

The heterogeneity of investor base manifests its potential impact of the dynamics
of sovereign borrowing costs during episodes of heightened global risk. Panel (b) of
Figure 3 traces the quantities of EM sovereign bonds held by important sectors through
three important global financial tightening (“risk-off”) episodes. The episodes include
the “Taper Tantrum” of May 2013, when the Federal Reserve surprised the market by
unveiling plans to taper asset purchases, the August 2015 market selloff, when the VIX
index jumped to its highest level between 2012 and 2019, and the initial phase of COVID-
19 around February 2020. Prior to each event, investor holdings are relatively stable,
displaying no clear pre-trends. Immediately following the shocks, investment funds
(dashed lines) swiftly liquidate their holding of EM sovereign bonds, while other major
investors as a whole steadily increase their holdings for months into each episode.

On top of Figure 1, the diverging portfolio holding dynamics across investor sectors
constitutes another direct motivation for me to partition the EM sovereign bond investor
base into investment funds and non-investment funds. They are also very different
institutions on their own. With highly liquid liabilities subject to rapid redemption,
open-ended investment funds may be forced to liquidate asset holding during down-
turns (Coval and Stafford, 2007; Jotikasthira et al., 2012). To support this mechanism, for
the “risk-off” episodes studied in Figure 3(b), I document strong redemption pressure
experienced by open-ended mutual funds from emerging market fixed income funds in
Figure I.A.2 in the Online Appendix using Morningstar data. On the other hand, the sta-
ble liability structure of banks, insurers and pension funds and accounting conventions
and regulations based on book values, enable these institutions to ride out transient fluc-
tuations of market values of their portfolio holding (Hanson et al., 2015; Chodorow-Reich
et al., 2020; Coppola, 2022).15 In subsequent analyses, I call banks and ICPFs “long-term

15Ng et al. (2019) focus on Asia-Pacific bonds during the Taper Tantrum and, similarly, find that
outflow-prone mutual funds sold bonds while insurers, annuities and pension funds served as net buy-
ers. Ben-David et al. (2012) document redemption-driven outsized asset sales by hedge funds during the
Global Financial Crisis. In related work, Brandao-Marques et al. (2022) show that the sensitivity of mutual
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investors” to make the distinction from investment funds clear.

(a) Trend (b) Risk-off episodes

Figure 3: Germany-based investors: Evolution of EM sovereign bond holdings

Source: Research Data and Service Centre (RDSC) of the Deutsche Bundesbank, Securities Holdings
Statistics (SHS-Base plus), 2010M3–2021M6, Morningstar, own calculations.

Note: Panel (a) reports the total face value of emerging market sovereign bond with a tenor larger than one year held by each broad
sector according to SHS-Base plus data from 2010 to 2021. Face values of non-EUR bond holding are converted to billions EUR
using end-of-period exchange rates. “ICPFs” refer to insurance companies and pension funds. Panel (b) focuses on important
episodes with adverse global risk factor movements. The dashed lines correspond to holding by investment funds, including
holding recorded in both SHS-Base plus and Morningstar portfolio data. The solid lines correspond to holding by long-term
investors (banks, insurers and pension funds (ICPFs)). Three episodes are covered. “Taper Tantrum” (in blue) refers to the surprise
announcement of Federal Reserve’s intention to taper asset purchases in May 2013. “Global selloff” refers to the August 2015 global
stock market crash, during which the VIX index reached its highest point after the European debt crisis. “COVID-19” refers to the
global outbreak of the COVID-pandemic in Febrary 2020. Each series is normalized by setting the amount of holding one month
prior to the event start date to 1, and scaling the rest of the observations accordingly.

3.3 Propagation of global risk by different types of investors

Having shed light on the variations in investor bases in the micro data, I now examine its
relation to the sensitivity of bond yields to global risk through the following regression:

∆yi,t(n) = β0∆ log VIXt + β1∆ log VIXt → θi,Fund,t↔1(n) + β2∆ log VIXt → θi,Bank+ICPF,t↔1(n)

+ Xi,t(n)δ + Θi,t↔1(n)γ + α(n) + ηi,t + ϱi,t(n)
(3)

where yi,t(n) is the yield of bond n issued by country i; Xi,t(n) is a set of control vari-
ables at the issuer or bond level, including a benchmark risk-free interest rate, industrial
production, credit qualities, amount outstanding, residual maturity bucket and bond

fund flows to global risk factors is higher when fund shares are easier to redeem. The net purchases of
long-term investors I observe in the emerging market sovereign bond market is consistent with their role
as buyers in other markets in these episodes, such as the U.S. corporate bond market during COVID-19
(O’Hara et al., 2023).
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liquidity. Some of these controls drop out when issuer-time fixed effect is included.
Θi,t↔1(n) denotes a vector of investor composition (θi,Bank+ICPF,t↔1(n), θi,Fund,t↔1(n))

↗ for
each bond. α(n) and ηi,t denote bond fixed effect and issuer→time fixed effect, respec-
tively. I focus on bonds issued by emerging market countries in Europe so that the
investor base captured in my data likely includes important marginal investors such as
Germany-based institutions and global mutual funds. I restrict the bonds to those that
have not defaulted, with a fixed coupon and a non-amortized redemption schedule.16

Equation (3) builds on the standard “push-pull” regressions in the international fi-
nance literature to evaluate the global (push) and local (pull) correlates with capital flow
and asset prices (see Calvo et al. (1993); Gilchrist et al. (2022), among others). The inter-
action coefficients β1 and β2 measure the dependence of sovereign spread sensitivity to
global risk factors on ex-ante investor composition.

To control for bond-specific factors that affect bond yields and investors’ ex-ante
selection motives based on time-varying country characteristics, I exploit the granular-
ity of the micro data by including bond and issuer-time fixed effects. Identification of
the coefficients β1 and β2 is thus based on within-bond time variations in the investor
composition that are unrelated to observed and unobserved global and issuer-specific
factors. Examples of such variations include idiosyncratic outflows from EM sovereign
bond funds (Chari et al., 2022), or randomness in the participation of insurers in the pri-
mary market (Coppola, 2022). Key confounding variations in the investor base driven by
issuer fundamentals, such as current account balance or distance to default, are absorbed
in the issuer-time fixed effect. In robustness checks, I restrict the comparison within nar-
rower groups of bonds with common characteristics, such as currency denomination
and residual maturity, to account for selection over observable key bond characteristics
documented in Table I.A.6.

My estimates demonstrate that an investor base comprised of mostly long-term in-
vestors could dampen the impact of Global Financial Cycle, while investment funds tend
to amplify the sensitivity to global risk factors. Column (1) of Table 1 reports the esti-
mation result with bond fixed effect only. I first confirm the finding in the literature,
but at the security level, that the borrowing cost of emerging market economies when
global financial risk tightens. In terms of economic magnitudes, a one standard devia-
tion increase in the VIX index is associated with a 5.4 basis point increase in sovereign

16I also drop bond-month observations in which θi,s,t(n) or the sum of θi,s,t(n) across sectors exceed
100% as they indicate potential measurement errors or doublecounting unaccounted for by my data clean-
ing procedure.
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(1) (2) (3) (4) (5)
large share large share

VARIABLES ∆ yield ∆ yield ∆ yield ∆ yield ∆ yield

∆ log VIX 0.1949*** 0.1720***
(0.0155) (0.0352)

∆ log VIX → lag bank+ICPF share -0.0074*** -0.0052*** -0.0012** -0.0013* -0.0009*
(0.0010) (0.0012) (0.0005) (0.0007) (0.0005)

∆ log VIX → lag fund share 0.0085*** 0.0075*** 0.0056*** 0.0035*** 0.0042***
(0.0013) (0.0017) (0.0009) (0.0008) (0.0008)

lag bank+ICPF share -0.0015*** -0.0014*** -0.0003 -0.0002 -0.0005*
(0.0005) (0.0004) (0.0003) (0.0004) (0.0003)

lag fund share 0.0018*** 0.0000 0.0006* -0.0000 0.0006
(0.0005) (0.0005) (0.0004) (0.0003) (0.0004)

∆ 10y Bund yield 0.4230*** 0.5260***
(0.0153) (0.0184)

∆ log IP index -0.2553*** -0.9771***
(0.0760) (0.1012)

∆ credit quality (issuance) 0.0912*** -0.0448 -0.0991*** -0.0472 -0.1879***
(0.0225) (0.0282) (0.0365) (0.0334) (0.0440)

∆ log amount outstanding -0.0364 0.0945 0.0029 0.0930*** 0.0080
(0.0322) (0.0600) (0.0204) (0.0339) (0.0194)

Switch maturity bucket 0.0167 0.0468** 0.0068 0.0273*** 0.0145*
(0.0132) (0.0196) (0.0091) (0.0085) (0.0083)

∆ bid-ask spread 0.1602***
(0.0316)

Observations 33,071 10,671 32,938 10,388 30,500
R-squared 0.0722 0.1689 0.6118 0.7967 0.6806
Bond FE ↭ ↭ ↭ ↭ ↭
Issuer*Time FE ↔ ↔ ↭ ↭ ↭

Table 1: Bond yield sensitivity to global risk factors and the role of foreign investor base

Source: Research Data and Service Centre (RDSC) of the Deutsche Bundesbank, Securities Holdings
Statistics (SHS-Base plus), 2012M12–2021M6, own calculations.

Note: Table 1 reports push-pull regressions relating month-to-month changes in bond yield to “push” (global) factors and “pull”
(local) factors according to (3). The sample runs from 2012M12 to 2021M6, including only sovereign bond issued by emerging
market economies in Europe. The regressions are augmented with measures of lagged investor composition, including both
investment fund share and total share of banks, insurance companies and pension funds, and interactions of lagged investor
composition with log VIX. Credit quality is measured at the issuance level and refers to Eurosystem’s Credit Quality Step,
harmonizing credit ratings into six bins. Maturity bucket is defined by separating bonds into bins according to residual maturity
shorter than 1 year, between 1 and 3 years, 3 and 5 years, 5 and 10 years, and above 10 years. Each bucket is assigned a score from 0
to 4 with rising residual maturities. “Switch maturity bucket” takes on value 0 if the maturity bucket does not change from the
previous month, and takes on value -1 if the maturity bucket switches from the previous month. Monthly changes in bond yield
are winsorized at 1% and 99% tail. Bond-month observations with investor shares larger than 100% are dropped. Columns (1) to (2)
report results with bond fixed effect only, while columns (3) to (5) add issuer→time fixed effect. Columns (1) and (3) use all EM
European sovereign bonds while columns (2) and (4) focus on bonds with a large investor base (larger than 15%) coverage in my
data. Column (5) further add bid-ask spread as an additional control. “ICPF” refers to insurance companies and pension funds.
Standard errors are clustered at bond level. *** p<0.01, ** p<0.05, * p<0.1.
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yield, controlling for other global and local factors. My estimate is quantitatively sim-
ilar to Gilchrist et al. (2021), who find that a 8 basis point widening of bond yield for
investment grade bonds.17 The interaction with ex-ante investor composition shows that
the sensitivity of sovereign yields to global risk factors depends on the ex-ante investor
composition. A 10 percentage point higher long-term investor share is associated with
a 38% reduction in the sensitivity in relative terms, while increasing the fraction held
by investment funds by the same proportion corresponds to a 44% stronger effect of a
rising VIX.

While investors’ sorting according to issuer characteristics explain a substantial frac-
tion of the observed relationship between investor base and bond yield sensitivity to
VIX fluctuations, Adding issuer→time fixed effect, column (3) shows that the coefficients
associated with interaction between VIX and investor composition shrink by 84% and
34% respectively for long-term investors and investment funds. Both interaction coeffi-
cients nevertheless remain statistically significant. A 10 percentage point higher share
held by investment fund now corresponds to a 29% larger yield sensitivity to VIX. In
addition, column (5) shows that controlling for the changing bond-specific liquidity con-
dition through bid-ask spreads has little impact on my estimates. While a worsening
bond liquidity is associated with a higher bond yield, the robustness of my estimates
goes against the intuition that bonds held primarily by long-term investors are insen-
sitive to global shocks because those bonds may be less actively traded. My finding
is nevertheless consistent with my empirical observation, that investors in my sample
are more likely to hold bonds with a larger amount outstanding, and those held by
long-term investors are more liquid on average (see Table I.A.3).

3.4 Robustness

Measurement and coverage I provide more results in the Online Appendix to alleviate
the concern that measurement issues and incomplete coverage of investor base and bond
liquidity condition could explain the results. In addition to controlling for lagged overall
exposure through the inclusion of θi,s,t↔1(n), columns (2) and (4) in Table 1 focus on
bonds in my sample with a large investor coverage (above 15%). Table I.A.7 replaces
the investor share variables in my baseline regression with the relative shares of banks,
insurers and pension funds against investment funds. Table I.A.9 interacts the investor
composition measure with the implied volatility of Euro STOXX index (V2X), arguably

17One standard deviation of monthly innovation of VIX index corresponds to a 28% change.
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more relevant for Germany-based investors than VIX. I reach similar conclusions from
these exercises.

Accounting for selection into observable bond characteristics In column (1) and (2)
of Table I.A.8 in the Online Appendix, I augment (3) with interactions between the VIX
index and characteristics of the bond issuance as additional controls. The interactions
include credit quality (at the issuance level), an indicator of Euro denomination, and
residual maturity bucket. Despite the finding of Table I.A.6 that banks, insurers and
pension funds exhibit strong preferences towards certain bond characteristics, the rela-
tionship between investor composition and bond yield comovement with VIX remains
unchanged.18 In another exercise reported in Columns (3) and (4) of Table I.A.8, I take
the USD- and EUR-denominated bonds in my sample, residualize yield changes for each
bond with a credit risk factor and a duration factor estimated from long-short portfolios
of sovereign bonds (by sorting bonds based on terciles of credit qualities or residual ma-
turities separately for each currency), and use the residuals as the dependent variable in
estimating (3). My results remain robust.

Addressing reverse causality Another concern of estimating (3) is that the positive
relationship between shares held by investment fund and VIX sensitivity of bonds may
be due to funds directly loading on bond-specific exposure to the global volatility factor.
This is unlikely for two main reasons. First, major fund investors in EM sovereign bonds,
such as mutual funds and ETFs, are not natural holders of volatility risk. Heighten global
risk is closely associated with outflows from emerging market bond funds (see Figure
I.A.2 in the Appendix,) which could significantly lower fund manager compensation
(Cen et al., 2023). There is also little evidence suggesting that end investors of the funds,
who are predominantly retail (Shek et al., 2017), are sufficiently sophisticated so as to
voluntarily expose themselves to VIX fluctuations (Ben-David et al., 2021b). Second, EM
funds’ capital allocation across bonds are subject to substantial rigidity due to index
following. In my Morningstar investment fund sample, 80 percent of funds refer to
indices such as EMBI or GBI-EM as benchmarks.

Taken together, my empirical findings establish the complementary mechanism be-
tween foreign investor base and asset attributes. With a diverse investor base, asset
prices are determined through the interaction of investors with substantial differences
in portfolio preferences and abilities to transmit shocks. Whether foreign portfolio in-

18Alternatively, controlling for Euro→time or issuer→Euro→time fixed effects yields similar results.
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vestment destabilizes the financing condition of emerging markets thus depend on who
holds the assets. Meanwhile, the composition of foreign investors is shaped by local
fundamentals and types of the securities being offered. While risk-sensitive investors
such as investment funds have been the primary focus of the literature, my analysis sug-
gests that examining the demand structure of banks, insurers and pension funds could
provide a more precise and complete understanding of emerging markets’ sensitivity to
global risk factors.

4 Shock impact and demand elasticity for sovereign debt

Long-term investors’ yield (semi-)elasticity of demand reflects the capacity of these in-
vestors to act as shock absorbers when a tightening global risk factor puts downward
pressure on asset prices, and therefore is pivotal in the determination of bond price sen-
sitivity to global risk factors. As long-term investors’ bond holding decision depends
heavily on bond characteristics (Table I.A.6), sovereign bonds with characteristics pre-
ferred by these investors may face a substantially larger demand elasticity compared to
those that do not possess such characteristics. To identify the yield elasticity, I use mutual
fund flows to construct plausibly exogenous shifts in the residual supply curve faced by
long-term investors for different types of bonds. The estimated demand elasticity would
serve as a crucial input for my quantitative model (Section 5).

I posit the following demand equation of long-term investors in the spirit of Koijen
and Yogo (2019) and Vayanos and Vila (2021), expressed in monthly differences:19

∆ log Bi,t(n) = αN + βN ∆yi,t(n) + Xi,t(n)δN + ϱi,t(n) (4)

Equation (4) pools all bonds with a common characteristic indexed by N , such as
currency denomination. Bi,t(n) denotes the total face value of bank, insurer and pension
fund holdings of bond n issued by country i at month t. Xi,t(n) denotes a set of bond-
and issuer-level characteristics that may enter investors’ portfolio decision (also in first
differences in logs or levels, similar to (3)). In my baseline specification, they include the
industrial production index of country i and the bid-ask spread. To account for investors’
incentive to rebalance portfolios towards alternative assets, I also control for changes in
the 10-year Bund yield, following Koijen et al. (2021) and Jansen (2023). Finally, ϱi,t(n)

19The recent demand-based asset pricing literature estimate similar equations (see Jiang et al. (2022);
Nevova (2023); Chaudhary et al. (2024); Jansen et al. (2024), among others).
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is an error term capturing demand disturbances unobservable to the econometrician.
Equation (4) is expressed in first differences and B is expressed in face value terms, simi-
lar to van der Beck (2022). One advantage of using month-to-month net trades (as Bi,t(n)

is expressed in face value terms) to identify the slope of demand is its consistency with
a flow-based identification strategy, and that first differences absorb the confounding
impact of observed and unobserved time-invariant characteristics.

4.1 Flow-based identification of demand elasticities

Motivated by the literature on flow-induced demand shocks, I propose two approaches
to identify the demand elasticities and overcome the simultaneity bias arising in regres-
sions involving prices and quantities. In both cases, I use mutual fund flows to construct
bond-level shifters of residual supply faced by long-term investors. The validity of a
flow-based instrument rests on the intuition that flow-induced demand has price impact
on emerging market assets following asset manager liquidation (Jotikasthira et al., 2012,
relevance), through “forced trades” by mutual fund managers that are external to the
decision of other types of institutional investors (exogeneity).

To arrive at appropriate measures of capital flows in and out of bonds exogenous to
long-term investors, I consider two flow-based instruments. The first one, in the spirit
of Lou (2012), Gabaix and Koijen (2022) and van der Beck (2022), captures the change
in capital allocation to each bond as a result of funds scaling up or down their position
using predetermined weights after capital injection or redemption. For bond n, define

FID
(T)
t

(n) =
∑j↑Jt(n) f̃

(T)
j,t · Qj,t↔1(n)

Amount Outstanding
t↔1(n)

(5)

where f̃
(T)
j,t captures the surprise amount of flow in or out of mutual fund j holding

bond n, normalized by the size of fund j in the previous period. I obtain f̃
(T)
j,t taking

the residuals from a pooled regression of raw fund flows (as a percentage of lagged
fund size) on T lags of monthly fund returns and a time fixed effect, to account for the
predictability of fund flows due to return-chasing (Gruber, 1996; Chevalier and Ellison,
1997; Sirri and Tufano, 1998) and for the impact of global factors.20

Qj,t↔1(n) is the lagged
market value of fund j holding of bond n. I transform FID into a measure of relative

20Alternatively, I extract residuals from fund-by-fund time-series regressions to construct f̃
(T)
j,t , and the

estimation results are robust to this choice.
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demand shocks by normalizing it using each bond’s lagged outstanding amount.

Using FIDt as the instrument assumes that long-term investors cannot exploit changes
in investment funds’ bond allocation driven by factors orthogonal to fund performance
and common economic drivers. This assumption is supported by several lines of argu-
ments. First, there is little evidence that outflows from emerging market bond funds
mechanically induce rising bond demand from long-term investors due to correspond-
ing inflows. In the data, deposits and technical reserves of German banks have close
to zero correlation with changes in the VIX index (see Figure I.A.3 in the Online Ap-
pendix). This pattern suggests that unlike investment funds (Figure I.A.2), flows in and
out of long-term investors are more stable against global risk factors. Second, mutual
fund managers’ discretionary trading in response to shocks does not directly enter the
measure, as funds’ predetermined portfolio weights, partially tied to some predeter-
mined external benchmark indices, are used to compute hypothetical demand pressure.
Finally, security-level mutual fund portfolio holdings and flows are available with a lag,
hindering the ability for other investors to respond in real time.

I construct a second instrument based on the assumption that long-term investors
cannot trade on idiosyncratic flow shocks from large mutual funds, by taking the fund
size-weighted average of the residualized flows ˆ̃

f j,t (Gabaix and Koijen, 2023). I define
the granular instrument at the bond level as21

GIV
(T)
t

(n) =
NJt↔1(n)

NJt↔1

·
(

∑
j↑Jt↔1

Sj,t↔1
ˆ̃
f
(T)
j,t

)
(6)

where Sj,t↔1 is fund j’s lagged size weight based on assets under management, NJt↔1(n)

denotes the number of funds holding bond n as of time t ↔ 1, and NJt↔1 is the total
number of funds at t ↔ 1.

GIVt captures the intuition that size-weighted average flows represent idiosyncratic
wealth fluctuation associated with large mutual funds that affects bond prices due to
granularity but is otherwise exogenous from the standpoint of long-term investors. Mul-
tiplying by the share of funds holding a particular bond allocates the shock exposure to
each bond in an intuitive manner – the more funds holding the bond, the more strongly
the residual supply curve would shift idiosyncratically for that bond. To shed light on
the validity of this approach in extracting an exogenous shock series, I provide narrative

21As the flows have already been purified, the expectation of their equal-weighted averages is zero. I
include fund return in the current month when calculating ˆ̃

f
(T)
j,t for FID but not for GIV, to allow for

idiosyncratic current performance shocks of large funds to drive their granular surprise flows.
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support in Table I.A.13 of the Online Appendix based on news coverage to show that
the measure indeed reflects idiosyncratic factors affecting major fund companies.22

4.2 Yield elasticities of demand for long-term investors

I estimate Germany-based long-term investors’ demand elasticity for non-default bonds
with a fixed coupon and non-amortized principal. Different from the sample used in the
push-pull regressions (Table 1), I also include issuers outside Eastern Europe to increase
statistical power. Changes in bond yields are winsorized at their 1% and 99% tails.

The first three columns of Table 2 report estimates using different versions of my
proposed instruments for Euro-denominated bonds. The instruments differ in whether
they are based on flow-induced demand or granular fund flows, and in the lags of fund
returns used to residualize mutual fund flows. Despite the differences, estimates of the
slope of the demand equation with respect to yields sit stable across columns (1) to
(3) at around 0.29. Raising the annualized bond yield by one percentage point would
increase long-term investors’ demand by 29%. My estimates thus imply a price elasticity
of demand of 5.8 for a five-year zero-coupon sovereign bond denominated in Euros.23

Meanwhile, the coefficients associated with Bund yield is negative, indicating plausible
substitution between emerging market bonds and risk-free alternatives.

I also find price elasticities of demand differ across bond types for long-term in-
vestors. Columns (4) and (5) show that there is hardly any evidence that long-term
investors are price-elastic towards bonds for which they are not the natural holders,
such as non-Euro bonds. In the Online Appendix, I report GMM estimation results
(Table I.A.12) including observations with Bi,t(n) = 0 and Bi,t↔1(n) to account for the
extensive margin of adjustment. I find that investment grade bonds also face a more
elastic demand from long-term investors compared to high-yield bonds, although the
point estimate is much noisier.

First-stage regressions reported in Table I.A.10 of the Online Appendix and the Lee

22A clear example of such idiosyncratic fund flow shocks occurred in October 2014, when Bill Gross
announced his departure from PIMCO. PIMCO’s emerging market funds are consistently among the top-
five largest funds in my data. The substantial outflows PIMCO suffered in the subsequent two months
after the announcement is reflected in my granular flow instrument.

23Estimated at the bond level, the elasticity should be regarded as a “micro elasticity” (see the discus-
sion in Gabaix and Koijen (2022)). My estimate is slightly larger than the “macro elasticity” estimates in
the literature measuring country portfolio responses (Koijen et al., 2021; Jiang et al., 2022). The implied
elasticity of my quantitative model (Section 5) for the long-term investors will be set at a value lower than
my estimate.
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(1) (2) (3) (4) (5)
FID3 FID12 GIV12 FID12 GIV12

VARIABLES EUR EUR EUR Non-EUR Non-EUR

∆yt(n) 0.298** 0.288** 0.297*** -0.237* -0.531
(0.146) (0.145) (0.103) (0.141) (0.387)

∆y10Y,t(Bund) -0.120* -0.114* -0.120** 0.090 0.232
(0.064) (0.063) (0.047) (0.084) (0.192)

∆ log IP 0.047 0.040 0.066 -0.061 -0.062
(0.087) (0.087) (0.084) (0.076) (0.078)

∆ Bid-ask spread -0.126 -0.121 -0.170** 0.196 0.416
(0.081) (0.081) (0.070) (0.150) (0.308)

Observations 6,445 6,372 7,902 24,471 25,052
tF standard error 0.158 0.158 0.113 0.141 0.430

Table 2: Demand equation of banks, insurers and pension funds: IV estimates

Source: Research Data and Service Centre (RDSC) of the Deutsche Bundesbank, Securities Holdings
Statistics (SHS-Base plus), 2012M12–2021M6, own calculations.

Note: Table 2 reports IV estimates of long-term investors’ (banks, insurers and pension funds) demand equation (4). The sample
runs from 2012M12 to 2021M6. Month-to-month changes in face value of total sector holding of each bond is regressed on changes
in bond yield, 10-year Bund yield, log industrial production index and bid-ask spread (winsorized at 1% and 99% tail). Bond yield
is instrumented using flow-induced demand shock (FID) or granular flow shock discussed in Section 4.1. Credit quality refers to
Eurosystem’s Credit Quality Step, harmonizing credit ratings into six bins. Monthly changes in bond yield are winsorized at 1%
and 99% tail. Columns (1) to (3) report estimates on the Euro-denominated bond sample, while columns (4) and (5) focus on the
non-EUR sample. In column (1), the instrument is FID generated from residualizing mutual fund flow by current and lagged
monthly returns for 3 months. Column (2) and (4) use FID with mutual fund flow residualized by time fixed effect, current and
lagged monthly returns for 12 months. Column (3) and (5) use the granular flow instrument (6) with the idiosyncratic flow being
the lagged fund size-weighted average of mutual fund flow. Standard errors are clustered at bond level. *** p<0.01, ** p<0.05, *
p<0.1. The table also reports Lee et al.’s (2022) tF standard errors for the demand slope, which are robust against weak
identification under just identification.

et al. (2022) tF standard errors reported in the baseline table indicate that both FID and
the granular flow shock instrument are strong instruments and thus are likely unaffected
by weak identification. The coverage of my mutual fund flow data contributes to the
strong first stage, as the dataset includes the largest open-ended mutual funds focused
on emerging markets. In the Online Appendix, Table I.A.11, I report two extensions
to my estimation procedure. First, I include pt↔1 → θi,Fund,t↔1(n), the total lagged share
of investment funds holding each bond n, multiplied by the lagged price of bond n, to
control for the overall exposure of individual bonds to flow-based demand shocks.The
estimated demand slopes remain similar to the baseline levels (columns 1 and 2). While
my preferred specification (4) aligns with the demand system literature (see Koijen et al.
(2021)) that relies on time-series variation to identify demand elasticities, I also add time
fixed effects to (4) and report the estimation in Table I.A.11 (columns 3 and 4), with FID

as the instrument.24 The estimated slope coefficients roughly double. The associated

24As time-series variation of the granular flow is key for the identification using GIV, I focus on FID

23



first-stage F statistics are significantly smaller, as the fixed effect weakens the power of
the instrument by partially absorbing time-series variation in the data.

5 A quantitative model of sovereign debt markets with
heterogeneous global investors

I introduce a quantitative model of the sovereign debt market with heterogeneous in-
vestors that can be taken to the data to capture the transmission of the Global Finanical
Cycle to emerging market sovereign borrowing. Building on Xiong (2001), Vayanos and
Vila (2021) and Kekre et al. (2023), the model features inelastic asset markets and endoge-
nous amplification of global financial shocks through wealth effects. I use my estimate of
the yield elasticity of demand from Section 4 to discipline the model. The model quanti-
fies the relative contribution of global and local factors in driving sovereign spreads and
replicates the empirical relationship between investor base and bond yield sensitivity to
shocks. I then use the model as a laboratory to quantitatively evaluate counterfactuals.

5.1 Environment

Time is continuous. The asset space contains a risk-free bond paying a constant, exoge-
nous interest rate r, and a perpetual coupon bond subject to random face value haircuts,
as a stand-in to characterize emerging market sovereign bonds.

Risky perpetuity The risky perpetuity is in constant supply s with price Pt at time t.
At each instant dt, the bond pays a coupon κdt, but is also subject to a “partial default
shock”. To focus on the role of investor demand, I make the simplifying assumption that
default is exogenous and follows a Poisson jump process Nt with random arrival rate
λt. Upon default, investors suffer a deterministic loss of δ per unit of investment (in face
value terms) as a haircut.25

The arrival rate of default, denoted λt, follows a square root process reflected at

with time fixed effects in this robustness exercise.
25Costain et al. (2022) use a similar modeling device to incorporate default risk into a prefered-habitat

model of the term structure. They asume a fixed default rate, and investor wealth is not a state variable.
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boundaries 0 < λmin < λmax:

dλt = κλ(λ ↔ λt)dt + σλ

√
λtdBλ,t, λt ↑ [λmin, λmax] (7)

where Bλ,t is a standard Wiener process. The CIR process is a natural candidate to
capture default as a “rare disaster” (Wachter, 2013).26 I calibrate the process (7) to match
cross-country moments associated with sovereign spreads and default rate, so that states
with high and low λ can be interpreted as comparing issuers with different country
fundamentals. Alternatively, λ can also be interpreted as the propensity for the bond
issuer to devalue its local currency, so that the model can be also mapped to the case of
foreign versus local currency nominal bonds.

For reference, I define the fundamental value of the risky perpetuity as the present
value of expected cash flow if an investor never sells the perpetuity that it holds, dis-
counted by the risk free rate. The fundamental value is a function of the default risk at
time t and parameters of the default risk process, and is given by

F(λ) = E
[ ∫ ∞

t=0
e
↔rt(κdt ↔ δdNt) | λ0 = λ

]
=

∫ ∞

t=0
e
↔rt(κ ↔ δE[λt | λ0 = λ])dt (8)

where the second equality follows from the property of Poisson processes with random
intensity.27 The fundamental value Ft ↓ F(λt) is increasing in the coupon rate κ and
decreasing in the current default risk λt, as well as long-run default risk λ.28

Asset managers A unit mass of investment fund managers have log utility and an in-
finite horizon. The asset managers have discount rate ρ, and face exogenous liquidation
with intensity ξ. I introduce liquidation to match empirical moments on the average
life span of bond funds. When an asset manager is liquidated, a new manager sets up
a fund with an exogenous level of initial wealth W. An asset manager with wealth wt

26In my calibration, the parameters in Equation (7) always satisfy the Feller condition: 2κλλ > σ2
λ, so

that the default risk process is always strictly positive. I impose a reflecting barrier λmin close to zero for
numerical tractability.

27The process Nt satisfies E[Nt] = E
[ ∫

t

0 λsds

]
. It follows that E

[ ∫ ∞
0 f (t)dNt

]
=

∫ ∞
0 f (t)E[λt]dt for

continuous f . The integral
∫ ∞

0 f (t)dNt is defined in the Riemann–Stieltjes sense.
28Without the reflecting barriers, both E[λs | λt = λ] and Ft can be analytically expressed. The semi-

closed form expression for Ft(λ) is difficult to evaluate directly in the presence of reflecting barriers. I
nevertheless show in Appendix I.B.4 that the conditional expectation can be backed out by solving a
Kolmogorov backward equation using the standard finite-difference method.
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consumes every period and solves the following portfolio choice problem:

max
ct,xt

E0

∫ ∞

0
e
↔(ρ+ξ)t log ctdt

s.t. dwt = (rwt ↔ ct + ξwt)dt + xt · (dPt + κdt ↔ rPtdt ↔ δdNt) + σzwtdBz,t

(9)

where xt is the amount of the risky perpetuity held in face value terms.29 Asset man-
agers in my model are subject to an aggregate Brownian wealth shock dBz,t with standard
deviation σz, capturing funding shocks faced by open-ended investment funds through
capital injections and redemptions by the ultimate global fund investors that drive asset
liquidation. As fund flows are closely connected to global risk, I call dBz,t the Global

Financial Cycle shock. For simplicity, I assume that asset managers are atomistic, and the
shock processes Bz,t, Bλ,t and Nt are independent.30

Long-term investor I model long-term investors by an aggregate risky asset demand
function Zt downward-sloping in the log deviation of bond price from its fundamental
value and in the default risk:

Zt = ↔α(λt) · log
(

Pt

Ft

)
↔ θ1λt (10)

where α(·) > 0, α↗(·) < 0. (10) builds on Xiong (2001) and the recent preferred-habitat
demand literature (Vayanos and Vila, 2021; Costain et al., 2022; Kekre et al., 2023). The
demand function captures key characteristics of asset demand of long-term investors,
such as banks, insurers and pension funds. Wealth does not enter the demand function,
consistent with the deep-pocketed nature of these investors. (10) does not load on dBz,t,
reflecting the demand’s “safe hand” nature in the face of global risk shocks. Holding
all else constant, long-term investors increase their demand for the risky perpetuity
when its price falls below the fundamental (long-run) value, as a buy-and-hold strategy

29I follow the standard assumption in perpetual youth models (Blanchard, 1985) and add ξdt fraction of
each unit of wealth to the drift of asset manager wealth as an annuity payment from outside competitive
insurers. For simplicity, I assume that the annuity policy is written over the entirety of asset manager
wealth, and the outside insurer is able to hedge the stochastic fluctuations.

30As a result of this assumption, dBz,t captures fluctuations in factors external to asset fundamentals
that affect the risk-bearing capacity of asset managers. The ultimate sources of external fluctuations that
affect the financial cycle may include center-country monetary policy and economic news (Bekaert et al.,
2013; Boehm and Kroner, 2023), pure shifts in the risk appetite, or non-fundamental noise trader shocks
(De Long et al., 1990). The shock is assumed to scale with investment funds’ wealth only, making it easier
to calibrate using fund flow data.
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would deliver a higher payoff when the bond becomes cheaper.31 The scale of demand
adjustment, however, depends on bond attributes. Equation (10) models this dependence
through a demand slope term α(λ) that is decreasing (in absolute value) in bond default
risk. In my calibration, I follow the preferred-habitat investor literature and assume that
α(·) takes the exponential form, so that the demand function can be rewritten as

Zt = ↔α · exp(↔δλλt) · log
(

Pt

Ft

)
↔ θ1λt (11)

where δλ > 0 is a pivot parameter that controls for the speed at which the elasticity
of demand changes across the default risk spectrum. Long-term investors’ demand for
the risky asset may also respond directly to shifts in bond fundamentals, with investors
selling assets when default risk increases. The additional linear term ↔θ1λt with θ1 > 0
captures this idea in reduced form.

In practice, the direct dependence on default risk of the elasticity and level of long-
term investors’ risky asset demand reflects the impact of regulatory constraints and
risk management concerns that limit the risk exposure of these investors. Section I.B.2
in the Online Appendix sketches a static optimizing foundation, based on Gabaix and
Maggiori (2015), to motivate this dependence. In particular, the variable demand slope
α(λ) in (10) measures the dependence of a credit constraint facing long-term investors
on default risk, resembling the risk-weighted capital requirement based on sovereign
credit risk stipulated in Basel III and Solvency II. The linear term θ1λt is motivated by
the additional holding costs faced by long-term investors exposed to default risk, such
as costly equity issuance to cover book value losses upon default (Dvorkin et al., 2021).

I look for a Markov equilibrium in which the bond price depends on the default
risk and aggregate asset manager wealth, W, and restrict attention to the equilibrium in
which both bond price and aggregate asset manager wealth follow jump-diffusions:

dPt = ωtdt + ηλ,tdBλ,t + ηz,tdBz,t + ηN,tdNt (12)
dWt

Wt

= Φ1,tdt + Φ2,tdBλ,t + Φ3,tdBz,t + Φ4,tdNt (13)

where ωt, ηλ,t, ηz,t, ηN,t, Φ1,t, Φ2,t, Φ3,t and Φ4,t are functions of the state variables (λ, W).
In the Online Appendix, I provide a formal definition of the equilibrium, and prove
Proposition 1 which characterizes the equilibrium bond price P(λ, W) as a solution to

31The dependence of bond demand on the fundamental value Ft can also be seen as a direct extension
of the preferred-habitat demand function, introduced in Vayanos and Vila (2021), to coupon-paying bonds.
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a partial differential equation subject to a series of boundary conditions. The bound-
ary conditions pin down the behavior of the bond price when aggregate asset man-
ager wealth is zero or infinity. In the former case, the bond is entirely priced by the
downward-sloping demand of long-term investors. In the latter case, asset managers
become effectively risk neutral and take over the entire market, and set the bond price
equal to its fundamental value.

5.2 Economic mechanism

Equilibrium pricing of risk The first-order conditions of the asset managers imply that
the ex-ante excess return of the risky perpetuity can be decomposed into three terms:

Et[dPt] + κ

Pt

↔ r

︸ ︷︷ ︸
Excess return

= P
↔1
t

·
[

Φ2,tηλ,t︸ ︷︷ ︸
Comovement of wealth and price
exposure to default risk shocks

+ Φ3,tηz,t︸ ︷︷ ︸
Comovement of wealth and price

exposure to wealth shocks

+ λt ·
δ ↔ ηN,t

1 ↔ χt(δ ↔ ηN,t)︸ ︷︷ ︸
Outright default premium

]
.

(14)

According to (14), asset managers price three sources of risk. The first two terms
on the right hand side capture the risk premia associated with Brownian asset manager
wealth shocks and default risk shocks. The final term captures the role of Poisson default
shocks, including both its direct impact through the dependence on haircut δ, as well as
its indirect impact on asset manager wealth. The term ηN,t is implicitly defined by the
price difference before and after jumps due to default-induced changes in wealth:

ηN,t = P(λ, W(1 + Φ4,t))↔ P(λ, W) < 0

where Φ4,t < 0 corresponds to the wealth exposure to the default shock.

My model captures the interdependence between asset attributes and investor com-
position and their contribution to the transmission of global financial shocks.Investors
are differentially exposed to global financial shocks. Asset managers’ portfolio alloca-
tion to the risky perpetuity directly responds to changes in their risk-bearing capac-
ity driven by wealth fluctuations. Following a negative wealth shock, asset managers
become more risk-averse and liquidate their risky asset holdings, exerting downward
pressure on the bond price. Long-term investors stabilize the market by buying bonds
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in response. Meanwhile, the dependence on default risk of the elasticity and level of
long-term investor demand reflects the reverse influence of fundamental asset attributes
on the investor composition and thus on bond yield sensitivity to shocks.

Endogenous shock amplification through wealth revaluation In my model, wealth
revaluations of asset managers endogenously amplify exogenous shocks.32 As shown
in Appendix I.B.1, the sensitivity of bond price to exogenous wealth shocks ηz,t and the
equilibrium sensitivity of wealth to the same shock Φ3,t can be intuitively expressed as:

ηz,t =

Direct impact︷ ︸︸ ︷
PW,tWtσz +

Wealth revaluation︷ ︸︸ ︷
PW,tXtηz,t =

PW,tWtσz

1 ↔ XtPW,t
(15)

Φ3,t = σz + PW,tXtΦ3,t =
σz

1 ↔ XtPW,t
(16)

where Xt is the risky asset position. (15) suggests that a negative wealth shock with size
σz has a direct impact on the bond price due to liquidation. The price impact of such
liquidation leads to an additional wealth loss and further erosion of asset managers’
risk-bearing capacity, further pushing down the asset price. This mechanism is captured
by the second term. In equilibrium, asset manager wealth is revalued by an amount
given by ηz,tXt, and the sensitivity of the bond price to wealth shocks is multiplied by an
amplification factor (1↔ XtPW,t)↔1. This factor depends on asset managers’ current risky
asset position Xt, and is greater than one and increasing in Xt when 0 < XtPW,t < 1, a
condition that holds in my quantitative exercises.33

The role of long-term investors’ demand elasticity The demand elasticity of long-
term investors plays a crucial role in shaping yield spreads, volatility, and bond price
sensitivity to shocks. For a given level of default risk λt = λ, denote α = α(λ) in
long-term investors’ demand equation (10). (15) can be written as

ηz,t =

Direct impact︷ ︸︸ ︷
PW,tWtσz +

Wealth revaluation︷ ︸︸ ︷
(ηz,t · [s + α log(Pt/Ft) + θ1λ])PW,t (17)

32This force is absent in sovereign default models with exogenous risk-premium or wealth shocks
(Aguiar et al., 2016; Bianchi et al., 2018).

33The mechanism formalizes the knock-on price impact in the corporate bond market due to fund fire
sales and common holdings (Falato et al., 2021). The same wealth revaluation channel also applies to the
transmission of fundamental shocks (also see Bocola (2016)). Appendix I.B.1 shows that the exposure of
price and wealth to fundamental shock is amplified by the same factor.
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Holding all else unchanged, since log(Pt/Ft) < 0 given finite asset manager wealth,
(17) implies that a larger demand elasticity of long-term investors through a higher α

corresponds to a lower bond price sensitivity to wealth shocks.

The mechanism can be best understood based on a simple demand-supply diagram
(Figure 4(a)). The left panel plots the policy function of asset manager demand as a
function of wealth for an average level of default risk and different values of long-term
investors’ demand slope parameter α. In response to a negative wealth shock indicated
by the horizontal dashed arrows, asset managers liquidate their holding of the risky
perpetuity. Log utility implies for a given return, investors scale down their demand
proportionately, as the portfolio weight of the risky perpetuity depends on asset manager
wealth only through bond prices (see equations (14) or (IA.27) in the Online Appendix).

When asset managers liquidate, bond prices fall and long-term investors move up
along their demand curves to absorb the residual supply, as total supply of the bond is
assumed to be fixed. The right panel of Figure 4(a) compares the degree of price drop
in response to the negative wealth shock for low and high values of α, by plotting long-
term investor holdings against the bond price. With a lower elasticity, the demand curve
is flatter, requiring a larger price response to induce the long-term investor to provide
liquidity. In equilibrium the impact of exogenous wealth shocks would be dampened
by a higher demand elasticity, as Figure 4(b) shows by comparing the wealth exposure
to dBz,t between the case of high and low demand elasticity in the region around the
average level wealth implied by the stationary distribution (see (16)).

5.3 Calibration

I pin down the parameter values based on macro and micro data to be consistent with
important facts related to issuers and lenders in the emerging market space. To preserve
space, I report the baseline calibration in Table 3, highlight a few important parameters,
and relegate additional details to the Online Appendix.

Haircut upon default A jump shock in my model is a partial default on perpetuities.
As such, I follow Arellano et al. (2023) in pinning down the value of haircut δ. I calculate
its value from (18) using data on arrears and external debt stocks from World Bank
International Debt Statistics and haircuts after restructuring (measured by Cruces and
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(a) The transmission of wealth shocks to risky
asset prices (b) Shock amplification

Figure 4: Illustration of key model mechanisms: Connection with long-term investors’
demand elasticity

Note: Panel (a) connects the response of bond price to a negative wealth shock to asset managers to long-term investors’ demand
elasticity. The left chart plots asset manager’s demand for the risky perpetuity as a function of wealth. Default risk is set to its
long-run mean for illustration purposes. The dashed arrows illustrate a negative shock to asset manager wealth. They are
associated with solid arrows indicating the intended amount of risky assets to be liquidated following the wealth shock. The right
panel plots long-term investor holdings as a function of bond price. The vertical solid arrows represent the amount of risky assets
long-term investors need to absorb given no price change. Due to downward-sloping demand, bond price adjusts according to the
horizontal arrows. The calibration with high elasticity (red lines) are associated with lower price decline compared with a
calibration with low demand elasticity (blue lines).
Panel (b) plots Φ3,t, the equilibrium exposure of asset manager wealth with respect to exogenous wealth shock dBz,t (see (16)),
when default risk is at its long-run mean λ. Two cases are compared, in that the baseline (blue line) parameterization has the
long-term investors’ demand being less price elastic compared to that plotted in red. The vertical dashed line reports the mean of
the stationary wealth distribution under the baseline calibration. The horizontal dashed line reports the value of σz, the size of the
wealth shock.

Trebesch (2013)):

δ =
κ · Λ · H

λ
(18)

where Λ is an average measure of debt in arrears as a fraction of the total external debt
stock (28%), and H is the average haircut after restructuring (37%). To interpret this
formula, note that in my model, the present value of the cash flow of a risk-free bond
with coupon κ is κ/r. With λ probability, Λ fraction of the bond would be in arrears,
and in present value terms, 37% of the debt in arrears is lost as a haircut to investors.

Demand elasticity The long-term investors’ demand elasticity is an important param-
eter in my model. I compute their average demand response to a 1 percentage point
change in bond yield using simulated data and use the yield (semi-)elasticity of demand
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for Euro-denominated bonds estimated in Section 4 to guide the calibration.34 In my
model, long-term investors should be interpreted as including foreign banks, insurance
companies and pension funds, and domestic private agents possibly with an even lower
demand elasticity for sovereign debt (Fang et al., 2022). For this reason, I set the tar-
get at 21%, which is a weighted average of the foreign component (29%, according to
my estimate for Euro-denominated bonds in Table 2) and a domestic demand elasticity
that is roughly one third of that estimate, based on Fang et al. (2022). As my empirical
estimation focuses on Euro-denominated bonds, the weights for foreign and domestic
long-term investors are calculated using aggregate data from the new Securities Hold-
ings Statistics by Sector (SHSS) data published by the ECB for Slovakia. The Online
Appendix provides a step-by-step guide on how I obtain the calibration target.35

I solve for the equilibrium using an algorithm based on the finite difference method
that handles discontinuous shocks, multiple state variables with cross derivatives, and
nontrivial boundary conditions. Statistics in the model come from simulating the model
multiple times at the monthly frequency for 7500 years. Appendix I.B.4 provides more
detail on my solution and simulation method.

5.4 Quantitative findings and model validation

The calibrated model fits the targeted moments well (see Table 3). I use the calibrated
model to quantitatively explore the contribution of the Global Financial Cycle to emerg-
ing markets’ sovereign borrowing cost. My model’s implied quantitative relationship
between sovereign spread, investor base, and wealth shocks, while untargeted, is also
consistent with observed patterns in the data.

Figure 5, Panel (a) reports the results of a variance decomposition exercise. To gauge
the contribution of wealth shocks and default risk shocks to the variation of bond yields,
I set the actual realization of one shock to zero and compare the variance of bond yields
assuming that only the other shock is active, against the baseline simulation with both

34The number is derived from running an OLS regression similar to (4):

∆ log Zt = α + β0∆yt + β1∆λt + ϱt. (19)

35Setting the elasticity to a smaller number than my empirical estimate – a “micro elasticity” – is
consistent with a small “macro elasticity” estimated by the literature (Gabaix and Koijen, 2022). The 21%
response to a 1 percentage point increase in yield implied by the model matches the macro elasticity
estimates by Jiang et al. (2022) for long-term debt.
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Parameter Description Value Sources/Moments in data

Bond characteristics

r Risk-free rate 0.02 Standard value
λ Average default intensity 0.038 Arteta and Hale (2008); Tomz and Wright

(2013)
κ Coupon rate 0.06 Meyer et al. (2022)
δ Loss after default 0.16 Equation (18), Arellano et al. (2023)
s Bond supply 0.49 Debt-to-GDP ratio of 49% (IMF)

Asset manager characteristics

ρ Discount rate 0.02 2% annual mutual fund return (Morningstar)
σz Volatility of %-AUM shock 0.214 6.18% monthly volatility (Morningstar)
ξ Liquidation probability 0.041 Average lifetime of 24.3 years (Maqui et al.,

2019)

Technical parameters

W Initial wealth after rebirth 0.005
λmin Lower boundary of default risk 0.005
λmax Upper boundary of default risk 0.25

(a) Parameters set/estimated externally

Parameter Description Value Targeted moments Target Model

κλ Persistence of default risk process 0.420 Corr(Default risk, Yield) 0.4 0.4
σλ Volatility of default risk process 0.09 Average yield spread 3.6% 3.5%
α Demand slope common parameter 0.489 Yield volatility 0.6% 0.68%
δλ Demand slope pivot parameter 1.422 Yield (semi-)elasticity of demand 21 20
θ1 Aversion to default risk 0.334 Asset manager share 17% 17%

(b) Parameters internally calibrated and targeted moments

Table 3: Model calibration
Note: This table reports calibrated parameters and targeted moments. Panel (a) focuses on parameters set externally based on
literature or data. Sources are specified whenever possible. Panel (b) reports values of the parameters set via internal calibration.
The Online Appendix reports more details on the selection and calculation of targeted moments. In particular, yield spread and
volatility are calculated from EMBI data. Demand elasticity is a combination of my estimates for foreign long-term investors in
Section 4 and domestic investors reported in Fang et al. (2022). Asset manager share is computed from ECB SHS and IMF CPIS
data. The yield elasticity of demand in the model is computed by regressing log changes in long-term investor holdings on changes
in bond yield based on simulated data (see Equation (19)).

shocks activated.36 Wealth shocks explain a large proportion of bond yield variability:
shutting down exogenous wealth shocks leads to a decrease of bond yield variance by 60
percent, while default risk shocks account for 21 percent of the total variation. The sig-
nificant contribution of wealth shocks in my model is quantitatively close to the estimate
of Longstaff et al. (2011), who find that the first principal component of EM CDS spreads

36I start from the long-run mean of default risk with zero drift and make sure that randomness is not
driving the results by using the same realizations of shocks across different specifications.
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strongly comoves with global risk factors and accounts for 64 percent of the variation.

(a) Variance decomposition of yields
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(b) Wealth shock amplification by default risk
quartile: Simulated data

Figure 5: Variance decomposition of bond yields and the amplification of wealth shocks
Note: Figure 5 provides evidence for model validation. Panel (a) compares the variance of simulated bond yields under three cases
with different shock configurations, holding the equilibrium objects constant (i.e. no re-optimization of agents). The first simulation
(“both shocks”) corresponds to the baseline simulation with non-zero realized paths for both shocks. The second simulation (“no
fundamental shock”) sets the realization of bond default risk shocks to zero, while maintaining the same path of the wealth shock
as the baseline simulation. The third simulation shuts down wealth shocks instead. Panel (b) reports the estimated degree of
amplification of bond yield sensitivity to wealth shocks, when asset managers’ holding share is 10 percentage points higher than
the average. The horizontal line captures the average degree (19%) while the dots denote the degrees of amplification at varying
quantiles of bond default risk. 95% confidence intervals based on 100 replications are plotted.

I use the simulated data from the model to reproduce and revisit empirical patterns
observed in the actual data. In the spirit of (3), I regress changes in bond yield spreads
on the lagged asset manager share (demeaned), the exogenous wealth shock, and their
interactions, controlling for default risk and lagged asset manager wealth in some spec-
ifications. As a stand-in for Global Financial Cycle shocks, I multiply the exogenous
wealth shock by its volatility σz and express it in percentage AUM terms, with its sign
flipped so that a positive shock is comparable to a global financial tightening.37

Figure 5(b) reports the estimated interaction coefficients from simulated data, scaled
by 10 times the coefficients associated with the wealth shock, so that the dots represents
the degree of amplification when asset managers’ holding share exceeds the average by
10 percentage points. The average degree of amplication is 19%, suggesting that my
model is able to explain more than 60% of investment funds’ role in amplifying the
impact of financial shocks in the data (see Table 1). I also report the same interaction

37Formally, the full regression I run that generates Panel (b) is ∆yj,t = αj + 100β0,j(↔σz∆Bj,z,t) +

β1,j
Xj,t↔1↔Xj

s
+ 100β2,j(↔σz∆Bj,z,t)→

Xj,t↔1↔Xj

s
+ εj∆λt + ηjWt↔1 + ϱ j,t where j denotes a replication in the

simulation and ∆Bj,z,t corresponds to the exogenous wealth shock between t ↔ 1 and t in replication j.
There are two differences relative to Table 1: 1) the investment fund share is expressed in absolute levels
instead of percentage points; 2) the asset manager share is demeaned.
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coefficients by running regressions on partitions of simulated data by quantiles of default
risk. Consistent with the aggregate data (see Table I.A.5), the model is also able to
generate an inverse relationship between creditworthiness and bond yield sensitivity to
financial shocks. Bond yields is 20% less sensitive to fund outflows when default risk is
at the bottom 25% relative to when default risk is at the top 25%.

6 Counterfactuals and policy analysis

I use counterfactual parameterizations of the model to further disentangle the contribu-
tion of asset attributes and investor composition to the transmission of shocks. These
counterfactual scenarios are tied to hypothetical shifts in the asset demand structure of
long-term investors and asset managers, potentially shaped by various policy measures.
Consequently, this section also speaks to the spillover of changes to financial regulations
governing key global intermediaries for emerging markets.

I solve the model under five alternative parameterizations. On the side of the long-
term investors, I consider a scenario (“no selection”) in which long-term investors do not
explicitly favor safer assets and are more accommodative to credit risk. By making δλ =

0 in (11), this counterfactual setting resembles the treatment of exposure to sovereign
credit risk in the EU-wide Solvency II regulatory scheme in effect since 2016, which
only affects long-term investors such as insurers. For bonds issued by EU governments
denominated in the domestic currency of the issuers, Solvency II assigns zero risk weight
when calculating capital requirements against credit risk.38 In the optimizing foundation
of long-term investor demand (Appendix I.B.2), this regulatory design is consistent with
a demand slope α independent of default risk.

I also study the consequences of a shrinking long-term investor sector. In particular, I
consider lowering the magnitudes of both α and θ1 in (11) by 20% relative to the baseline
(“fewer long-term investors”), assuming homogeity among long-term investors. I also
solve the model with a higher bond supply parameter s to reflect a 11% higher debt-
to-GDP ratio (“higher residual supply”), mechanically increasing the exposure of both
types of investors to the risky asset. One can also regard this scenario as capturing the
inability of outside investors such as reserve managers to easily absorb debt supply.39

38This treatment is specified in Article 180(2,3) of Delegated Regulation (EU) 2015/35.
39The mappings between parameters to my counterfactual experiments are clearly spelled out in the

optimizing foundation of long-term investor demand laid out in Appendix I.B.2. δλ reflects the depen-
dence of the tightness of the credit constraint on asset fundamentals. θ1 captures the size of the additional

35



I also consider changes in the liability structure and shock exposure of the asset
managers. First, I reduce the volatility of exogenous wealth shocks σz to zero. By assum-
ing that asset managers do not face exogenous wealth shocks, this experiment (“stable
flow”) can be thought of as considering a shift from an open-ended to a close-ended
capital structure for funds. Second, I consider a scenario in which emerging market au-
thorities may be able to observe the identity of bondholders and selectively charging a
15% tax on the returns earned by asset managers. Long-term investors are not affected
by the tax, so that the buy-and-hold value F(λ) is kept unchanged.40

6.1 Sensitivity to the Global Financial Cycle and amplification of shocks

As a first step in comparing the counterfactuals, I focus on the endogenous amplification
mechanism in the model that affects the sensitivity of the bond yield spread to the Global
Financial Cycle shock dBz,t. Following the discussion in Section 5.2 and (15), I decom-
pose the bond yield spread sensitivity to a one standard deviation negative exogenous
wealth shock into two components – direct effect of the shock, and the amplification
effect through endogenous wealth revaluation, and report the numbers associated with
various counterfactual scenarios in Table 4.41

In my baseline specification (labelled “average default risk” in Table 4,) endogenous
wealth revaluation accounts for 28% of the sensitivity to Global Financial Cycle shock at
the long-run average level of default risk. Both the total sensitivity to global financial
shocks and the contribution of endogenous amplification systematically vary with bond
fundamentals. When the default risk is one standard deviation higher than its long-run
average (labelled “high default risk”,) endogenous amplification can explain 31 percent
of the total response to a given exogenous wealth shock.

When default risk is high, encouraging wider participation of long-term investors
in the sovereign debt market by weakening their preference for lower fundamental risk
(the “no selection” case) dampens the contribution of endogenous amplification to the
response of the bond yield spread by 20% (from 2.1 basis points to 1.7 basis points).

cost of being exposed to sovereign default risk.
40The law of motion for individual asset manager wealth in (9) becomes

dwt = (rwt ↔ ct + ξwt)dt + xt · ((1 ↔ τ) · (dPt + κdt ↔ δdNt)↔ rPtdt) + σzwtdBz,t

where τ is the tax rate. The boundary condition for W ↘ ∞ becomes limW↘∞ P(λ, W) = (1 ↔ τ)F(λ).
41(12) and the definition of bond yield imply that yield spread sensitivity of wealth shock dBz,t at a

given (λ, W) is ↔κηz(λ, W)/(P(λ, W))2. The individual components in Table 4 follow from (15).
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Compared to the baseline, asset managers hold a higher share of the risky perpetuity
when the default risk is low, but significantly cut their risky asset demand when the
default risk is high, as long-term investors become more accommodative to credit risk.
Consequently, the sensitivity of yield spreads to exogenous wealth shocks increases more
slowly with default risk. The difference in the sensitivity of yields between bonds with
high default risk and low default risk shrinks by 64% relative to the baseline calibration.
Bond fundamentals affect risk sensitivity in the model primarily through their impact
on investor composition, via shifts in the demand of long-term investors.

Shrinking the size of the long-term investor sector substantially enlarges the sensitiv-
ity of bond yield spreads to the Global Financial Cycle, while limiting the risk exposure
of asset managers through inflow tax helps reduce this sensitivity. Table 4 shows that
across all levels of default risk, the amplification effect is stronger than in the baseline
specification with a smaller long-term investor sector, and is weaker when a tax is levied
on asset managers. For average default risk, a 20% reduction in the demand of long-term
investors is associated with a rise in sensitivity of more than 60%, partly driven by a 68%
higher amplification effect. Meanwhile, a 15% tax on asset managers’ returns weakens
the endogenous amplification of shocks by 19% (from 1.1 basis points to 0.9 basis points).

6.2 Implication for emerging market borrowing cost

The mechanism formalized in the model is relevant for understanding the cost of sovereign
borrowing. Table 5 reports a key set of model-implied moments associated with the
baseline and the counterfactual specifications. Relative to the baseline, policy measures
such as Solvency II that remove the direct dependence of long-term investors’ demand
on default risk result in a 0.3 percentage point average decline in sovereign borrowing
costs, and a 0.1 percentage point reduction in the volatility of sovereign spreads (an 8.6%
and 14.7% reduction in relative terms, respectively). The responsiveness of long-term in-
vestors’ demand to bond price fluctuations increases by 25% in relative terms compared
to the baseline calibration. Despite the rising willingness of long-term investors to hold
the bond, the average share held by the asset managers in equilibrium increases slighly.

Reducing the mass of long-term investors by 20% substantially pushes up spread
and volatility (by 31% and 62% in relative terms, respectively), driven by a decline in
the responsiveness of long-term investors’ demand by 30% and a higher share held by
the asset managers. An increase in the residual supply facing private investors works
similarly. Asset managers absorb over 60% of the additional asset supply, resulting in a
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Component Baseline No selection Fewer LT investors Large supply Tax on asset managers
δλ = 0 α, θ1 0.8→baseline s = 0.6 τ = 0.15

Low default risk:

Total 4.6 4.9 7.6 7.3 4.1
Direct 3.5 3.5 5.6 5.4 3.2

Amplification 1.1 1.4 2.0 1.9 0.9

Average default risk:

Total 5.6 5.3 9.1 8.7 5.0
Direct 4.0 3.8 6.4 6.1 3.7

Amplification 1.6 1.6 2.7 2.6 1.3

High default risk:

Total 6.8 5.7 10.9 10.5 6.1
Direct 4.6 4.0 7.3 7.0 4.3

Amplification 2.1 1.7 3.6 3.5 1.8

Table 4: Decomposition of yield spread sensitivity to exogenous wealth shocks
(basis points response to a one standard deviation negative shock)

Note: Table 4 decomposes yield spread sensitivity (expressed in basis points) to a one standard deviation negative exogenous
wealth shock (dBz,t in (13)) into two components. The direct component corresponds to the direct effect of the shock on bond yield.
The amplification component refers to the shock impact on bond yield due to endogenous amplification through wealth
revaluation. I compute the decomposition for different levels of fundamental risk. The numbers for “average default risk”
correspond to to bond yield spread sensitivity to exogenous wealth shocks when default risk is at its long-run mean λ. “Low
default risk” and “high default risk” corresponds to one standard deviation below and above the long-run mean, respectively. The
scenario “no selection” corresponds to the counterfactual where I set the parameters δλ and θ1 in Equation (11) to zero. By doing
so, I remove the direct dependence between asset demand elasticity and default risk. The case “fewer LT investors” is associated
with the counterfactual where I shrink the size of long-term investor sector by 20% compared to the baseline, by setting α and θ1 in
(11) to 0.8 times the original value. “Larger supply” considers an increase of bond supply to 60% debt-to-GDP ratio compared to
the baseline number of 49%. “Tax on asset managers” refers to the scenario in which the asset managers are levied a 15% tax on the
return from holding the risky perpetuity.

one percentage point rise of bond spreads, and a 56% relative increase in yield volatility.

Policy measures on the asset managers have distinct implications for equilibrium in-
vestor composition and asset prices. Changing the liability structure of asset managers
by eliminating wealth shocks significantly reduces the borrowing costs (by 0.8 percentage
points relative to the baseline), mostly through an enlarged demand of asset manangers,
while yield spread volatility is 13% lower. As a result of the increased demand, the fun-
damental risk exposure of asset managers substantially widens relative to that implied
by the baseline calibration, partially offsetting the dampening of volatility when wealth
shocks are removed. On the other hand, a 15% inflow tax on risky asset returns discour-
ages asset managers from large exposure to the risky perpetuity, lowering the fraction
held by asset managers by 2.6 percentage points relative to the baseline. Unlike the pre-
vious scenario, the yield spread must rise by 0.2 percentage points under the inflow tax,
to induce long-term investors to step into the market. The asset manager tax lowers the
volatility of the yield spread by 9.1% in relative terms.
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Moment/Scenario Baseline No selection Fewer LT investors Larger supply Stable flow Tax on asset managers

δλ = 0 α, θ1 0.8→baseline s = 0.6 σz = 0 τ = 0.15

Spread (%) 3.5 3.2 4.6 4.5 2.7 3.7

Volatility (%) 0.68 0.58 1.1 1.06 0.59 0.62
Demand response to
1% yield increase (%) 20 25 14 14 21 19

Asset manager share (%) 17.5 18.3 21.1 20.5 32.7 14.9

Corr(yield, default risk) 0.4 0.21 0.35 0.36 0.48 0.44

Table 5: Model implied moments: Baseline and counterfactual parameterization
Note: Table 5 reports model-implied moments across the baseline calibration and alternative parameterizations. Details on each
counterfactual scenario are given in the notes following Table 4. Long-term investors’ demand response to 1% yield increase is
computed by regressing log changes in long-term investor holding Z on changes in bond yield y based on simulated data,
controlling for changes in default risk λ (see Equation (19)).

7 Conclusion

This paper provides empirical and quantitative evidence that foreign investor composi-
tion is an important metric to evaluate emerging markets’ resilience against the potential
adverse impact of a shifting Global Financial Cycle. Fostering a diverse, stable foreign
investor base is desirable. When global financial condition worsens, long-term investors
such as banks, insurers and pension funds could dampen the upward pressure on bor-
rowing costs as investment funds retreat from emerging markets. However, their capa-
bility to act as shock absorbers could be limited by various constraints biased towards
safe, home-currency assets.

Recent efforts by emerging markets to expand the access to their local-currency bond
market could alleviate concerns on currency mismatches, but may also attract risk-
sensitive foreign investors that play a destabilizing role, as suggested by my empirical
findings. For these countries, the quest for a stable funding conditions may involve a
careful design of issuance and opening strategy to attract stable, long-term investors.
For emerging markets, future work based on this paper can analyze the key tradeoff
facing sovereign borrowers and the optimal composition of foreign investor base under
the influence of the Global Financial Cycle.
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Online Appendix (for online publication only)

I.A Empirical appendix

I.A.1 Data and summary statistics

Table I.A.1 to I.A.3 report summary statistics associated with key variables used in the
empirical analysis. Table I.A.4 collects the key data used in the analysis.

all external domestic EM Europe other issuers EUR-denominated

mean/sd mean/sd mean/sd mean/sd mean/sd mean/sd

total share (%) 9.50 14.91 4.61 8.08 11.67 18.41

(11.31) (12.41) (7.35) (9.86) (12.93) (15.35)

bank share (%) 1.48 2.28 0.75 0.31 3.26 5.74

(5.68) (7.33) (3.44) (2.81) (8.01) (8.32)

fund share (%) 7.10 11.26 3.34 7.40 6.64 7.97

(8.22) (9.19) (4.72) (8.54) (7.67) (8.84)

ICPF share (%) 0.93 1.39 0.52 0.37 1.79 4.75

(4.19) (4.96) (3.29) (2.44) (5.84) (8.55)

Observations 105184 49938 55246 63577 41607 20117

Table I.A.1: Summary statistics: Investor base measure θ

Source: Research Data and Service Centre (RDSC) of the Deutsche Bundesbank, Securities Holdings
Statistics (SHS-Base plus), 2012M12–2021M6, own calculations.

Note: Table I.A.1 reports summary statistics related to the investor composition measure θ. For each sector and each bond, θ is
calculated by dividing the total face value by the amount outstanding, and is expressed in percentage points. In the case where a
bond has aggregate θ exceeding 100% from the calculation, it is dropped from the analysis.
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held by bank held by fund held by ICPF all
mean/sd mean/sd mean/sd mean/sd

callable bond 0.043 0.030 0.033 0.028
(0.20) (0.17) (0.18) (0.17)

EUR-denominated 0.318 0.183 0.584 0.201
(0.47) (0.39) (0.49) (0.40)

USD-denominated 0.347 0.247 0.144 0.242
(0.48) (0.43) (0.35) (0.43)

local currency (non-EUR) 0.283 0.530 0.219 0.515
(0.45) (0.50) (0.41) (0.50)

coupon rate 4.555 5.278 3.636 5.188
(2.87) (3.85) (2.50) (3.83)

senior bond 0.630 0.557 0.718 0.537
(0.48) (0.50) (0.45) (0.50)

collateral eligibility 0.130 0.066 0.194 0.079
(0.34) (0.25) (0.40) (0.27)

Observations 1450 2337 599 2499

(a) Static characteristics

held by bank held by fund held by ICPF all
mean/sd mean/sd mean/sd mean/sd count

credit quality (higher = better) 3.63 3.62 4.16 3.64 105044
(1.32) (1.37) (1.07) (1.38)

size (bil Euros) 1.77 2.69 1.92 2.58 104788
(2.03) (4.89) (2.87) (4.79)

bid-ask spread (%) 0.15 0.15 0.11 0.15 88931
(0.21) (0.23) (0.14) (0.23)

bond yield (%) 3.50 4.47 1.83 4.36 103626
(3.46) (4.12) (2.30) (4.08)

θ (%) 13.48 9.66 17.29 9.50 105184
(12.61) (11.06) (14.50) (11.31)

% held by banks 2.88 1.18 4.31 1.48 104788
(7.67) (4.43) (7.11) (5.68)

% held by funds 8.84 7.53 8.45 7.10 105184
(8.22) (8.27) (7.87) (8.22)

% held by ICPFs 1.76 0.96 4.52 0.93 104788
(5.68) (4.29) (8.30) (4.19)

(b) Dynamic characteristics

Table I.A.2: Summary statistics: Bonds matched to SHS-Base plus

Source: Research Data and Service Centre (RDSC) of the Deutsche Bundesbank, Securities Holdings
Statistics (SHS-Base plus), 2012M12–2021M6, own calculations.

Note: Table I.A.2 reports summary statistics on bonds held by Germany-based investors in the SHS-Base plus dataset.
Time-invariant characteristics are grouped in Panel (a) while time-varying characteristics are grouped in Panel (b). The table also
reports statistics by groups of bonds held by banks, investment funds and insurance companies and pension funds (ICPFs)
separately. Dynamic characteristics also include instrumental variables used in the estimation of demand equation (4). Credit
quality refers to Eurosystem’s Credit Quality Step that harmonizes credit ratings into six bins. Collateral eligibility refers to
eligibility for Eurosystem credit operations. Standard errors are double clustered at issuer and time level.
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(1) (2) (3) (4) (5)

VARIABLES N mean sd min max

Mutual fund flow (% fund size) 114,669 1.263 13.17 -50 200

Log fund size (USD) 116,136 18.88 1.669 15.42 25.02

Monthly return (%) 120,439 0.135 3.228 -48.84 21.87

Log VIX index 103 2.790 0.321 2.252 3.980

BEX risk aversion index 103 2.870 0.475 2.495 5.679

Federal Funds rate 103 0.716 0.805 0.0500 2.420

10-year Bund yield 103 0.405 0.701 -0.700 2.030

EMBI spread (bps) 3,780 285.0 416.5 14 5,799

5-year CDS spread (bps) 4,464 273.3 662.5 5.564 6,631

Log industrial production index 4,563 4.679 0.179 2.806 5.456

Spot exchange rate against EUR 9,373 877.0 3,356 0.0261 29,236

Table I.A.3: Summary statistics: Fund characteristics and holdings (Morningstar),
miscellaneous data

Source: Morningstar and miscellaneous data sources outlined in Table I.A.4.
Note: Table I.A.3 reports summary statistics related to mutual fund characteristics according to Morningstar data, as well as
miscellaneous control variables when estimating (3) and (4). Mutual fund characteristics (flow, return, size) are used compute
flow-based instrument for the estimation of bank and ICPF’s demand equation. Mutual fund flow, size, return use all data available
since the end of 2007. I report summary statistics for global factors (VIX to Bund yield), industrial production index, and exchange
rate from end-2012 to 2021M6. I report summary statistics for local factors (EMBI spread, 5-year CDS spread) from 2004 to 2019,
corresponding to my sample period in Section 2. Following Jotikasthira et al. (2012), I drop fund-year-month observations with
fund size lower than 5 million USD, and I winsorize the flow at -50% and 200% the size of each fund (these constitutes less than 1%
of the sample).
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Variables Sources

Bond-level information:

Static bond characteristics Bloomberg
Amount outstanding history Refinitiv
Germany-based investor holding Deutsche Bundesbank, SHS-Base plus
Bond yield, price, bid-ask spread Bloomberg, Refinitiv Datastream, SHS-Base plus
Credit rating Refinitiv, WRDS
Day-count convention, coupon frequency Refinitiv

Mutual-fund information:

Mutual fund/ETF portfolio, flow, return Morningstar

Country-level information:

Global risk measure (VIX) FRED
Industrial production National sources, CEIC
Stock price index National sources, CEIC
German Bund yield curve Deutsche Bundesbank, Time Series Database
Portfolio and other investment liabilities Lane and Milesi-Ferretti (2017)
Foreign non-bank share in EM government bond market Arslanalp and Tsuda (2014)
Cross-border bank claims on EM BIS
EMBI spread World Bank Global Economic Monitor

Table I.A.4: Key data sources
Note: Table I.A.4 reports the data sources of key variables used in my empirical and quantitative analysis. SHS-Base plus refers to
the Securities Holdings Statistics Base plus database (Blaschke et al., 2022) compiled by Research Data and Service Centre (RDSC)
of the Deutsche Bundesbank.
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I.A.2 Robustness and additional results
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Figure I.A.1: Sovereign CDS spread-VIX β and investor composition

Source: Lane and Milesi-Ferretti (2017), Markit, FRED, own calculations.
Note: Figure I.A.1 further illustrates the cross-country pattern between foreign non-banks’ presence through portfolio investment
and emerging market economies’ sensitivity to shifts in global risk factors. The y-axis corresponds to time-series regression
coefficients of monthly changes in 5-year USD CDS spread on monthly changes in the log CBOE VIX index, controlling for changes
in U.S. monetary policy. The x-axis corresponds to foreign non-banks’ share in total non-FDI external liabilities averaged over
2004–2019.
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(1) (2) (3) (4)
VARIABLES Beta Beta Beta Beta

Non-bank share in external liabilities 0.013*** 0.011**
(0.005) (0.005)

Foreign non-bank share in government bond 1.093*** 1.253**
(0.381) (0.684)

Stock market capitalization 0.000 -0.000
(0.000) (0.000)

Debt to GDP ratio 0.000 -0.005
(0.002) (0.003)

GDP per capita 0.119** 0.056
(0.044) (0.065)

Capital account openness 0.135 -0.120
(0.135) (0.125)

Credit quality step (score, 1-6) -0.126*** -0.112***
(0.025) (0.032)

Observations 21 21 21 21
R-squared 0.295 0.785 0.219 0.778

Table I.A.5: The relationship between sensitivity to the Global Financial Cycle and
foreign investor composition: Adding issuer-level characteristics

Source: World Bank, CEIC, Chinn and Ito (2006), own calculations.
Note: Table I.A.5 reports cross-sectional regression results relating country-specific sovereign yield spread sensitivity to log changes
in the VIX index (βi in (1)) and measures of foreign investor composition, controlling for issuer-level characteristics. Issuer-level
characteristics are averaged over the sample period used to calculate βi . The characteristics include stock market capitalization
(World Bank and CEIC), external debt to GDP ratio (World Bank), GDP per capita (World Bank) and the Chinn and Ito (2006)
capital account openness index. For coefficients related to foreign investor composition, I report bootstrap standard errors based on
a two-stage estimation of the cross-sectional regression in conjuction with (1). For other coefficients, heteroskedasticity-robust
standard errors are reported. Uruguay is dropped from the cross-sectional regressions due to data constraints. Credit quality step is
the credit score assigned to issuers based on S&P rating translated to six levels. The higher is the score, the higher is the
corresponding credit rating for the issuer country.
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(1) (2) (3) (4) (5) (6)
VARIABLES Bank Fund ICPF Bank Fund ICPF

Callable 0.129*** -0.015 0.016 0.134*** -0.007 0.025
(0.038) (0.024) (0.027) (0.039) (0.023) (0.027)

Log amount outstanding (EUR)) 0.026 0.055*** 0.035*** 0.030 0.054*** 0.037***
(0.023) (0.017) (0.012) (0.023) (0.017) (0.013)

Coupon -0.004 0.004 0.001 -0.002 0.004 0.002
(0.009) (0.003) (0.003) (0.009) (0.003) (0.003)

Maturity bucket -0.022*** 0.008 0.003 -0.021*** 0.008 0.003
(0.007) (0.006) (0.006) (0.006) (0.006) (0.007)

Euro denomination 0.234*** 0.019 0.662*** 0.229*** 0.023 0.662***
(0.072) (0.026) (0.047) (0.074) (0.026) (0.048)

Seniority 0.267*** 0.088*** 0.066*** 0.278*** 0.079*** 0.062**
(0.062) (0.021) (0.025) (0.062) (0.019) (0.025)

Collateral eligibility -0.036 -0.056 -0.175** -0.039 -0.068 -0.181**
(0.073) (0.054) (0.072) (0.071) (0.057) (0.076)

Investment grade -0.034 0.020 0.097**
(0.037) (0.012) (0.048)

Observations 105,212 105,212 105,212 104,802 104,802 104,802
R-squared 0.477 0.282 0.566 0.506 0.341 0.591
Issuer FE ↭ ↭ ↭ - - -
Time FE ↭ ↭ ↭ - - -
Issuer*Time FE - - - ↭ ↭ ↭

Table I.A.6: Propensity of holding EM sovereign debt and the role of bond
characteristics

Source: Research Data and Service Centre (RDSC) of the Deutsche Bundesbank, Securities Holdings
Statistics (SHS-Base plus), 2012M12–2021M6, own calculations.

Note: Table I.A.6 reports estimation results from a linear probability model relating holding decision to bond characteristics. The
sample period is 2012M12 to 2021M6. For each sector, an indicator variable of whether the sector holds a particular bond is
regressed on a set of bond-level characteristics, including callability, log amount outstanding, coupon rate, residual maturity
bucket, Euro denomination, Seniority and collateral eligibility. Maturity bucket is defined by separating bonds into five bins
(assigned scores from 0 to 4) according to residual maturity shorter than 1 year, between 1 and 3 years, 3 and 5 years, 5 and 10
years, and above 10 years. Collateral eligibility refers to eligibility for Eurosystem credit operations. Columns (1) to (3) report
estimation with issuer and time fixed effect for banks, investment funds, and insurers and pension funds (ICPFs) respectively.
Columns (4) to (6) report results generated with the fixed effect of issuer interacted with time. Standard errors are double clustered
at issuer and time level. *** p<0.01, ** p<0.05, * p<0.1.
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(1) (2) (3) (4) (5)
large share large share

VARIABLES ∆ yield ∆ yield ∆ yield ∆ yield ∆ yield

∆ log VIX 0.3154*** 0.3858***
(0.0147) (0.0278)

∆ log VIX → lag bank+ICPF relative share -0.0032*** -0.0041*** -0.0004 -0.0015*** -0.0005**
(0.0002) (0.0004) (0.0002) (0.0003) (0.0002)

lag bank+ICPF relative share -0.0002* 0.0002 -0.0002** 0.0001 -0.0001
(0.0001) (0.0002) (0.0001) (0.0002) (0.0001)

∆ 10y Bund yield 0.4222*** 0.5245***
(0.0154) (0.0183)

∆ log IP index -0.2706*** -0.9766***
(0.0754) (0.1009)

∆ credit quality 0.0923*** -0.0424 -0.0993*** -0.0464 -0.1860***
(0.0225) (0.0280) (0.0367) (0.0334) (0.0444)

∆ amt outstanding -0.0375 0.0979* 0.0077 0.0922*** 0.0129
(0.0349) (0.0580) (0.0213) (0.0331) (0.0202)

∆ maturity bucket 0.0164 0.0451** 0.0063 0.0274*** 0.0141*
(0.0133) (0.0195) (0.0091) (0.0084) (0.0083)

∆ bid-ask spread 0.1628***
(0.0320)

Observations 32,793 10,671 33,001 10,495 30,555
R-squared 0.0732 0.1722 0.6148 0.7995 0.6843
Bond FE ↭ ↭ ↭ ↭ ↭
Issuer*Time FE ↔ ↔ ↭ ↭ ↭

Table I.A.7: Push-pull regressions: Relative shares of long-term investors

Source: Research Data and Service Centre (RDSC) of the Deutsche Bundesbank, Securities Holdings
Statistics (SHS-Base plus), 2012M12–2021M6, own calculations.

The relative shares of long-term investors are defined as

100 → θBank+ICPF
θBank+ICPF + θFund

.

Note: Table I.A.7 reports push-pull regressions relating month-to-month changes in bond yield to “push” (global) factors and “pull”
(local) factors according to (3). The sample runs from 2012M12 to 2021M6. Credit quality refers to Eurosystem’s Credit Quality
Step, harmonizing credit ratings into six bins. Maturity bucket is defined by separating bonds into bins according to residual
maturity shorter than 1 year, between 1 and 3 years, 3 and 5 years, 5 and 10 years, and above 10 years. Each bucket is assigned a
score from 0 to 4 with rising residual maturities. “Switch maturity bucket” takes on value 0 if the maturity bucket does not change
from the previous month, and takes on value -1 if the maturity bucket switches from the previous month. The regressions are
augmented with measures of lagged relative investor composition. The measure is computed as the total holding of banks and
ICPFs as a share of total holding of banks, ICPFs and mutual funds for a particular bond in my sample. The risk factor is further
interacted with the relative investor share variable. Credit quality refers to Eurosystem’s Credit Quality Step that harmonizes credit
ratings into six bins. I winsorize monthly changes in bond yield at 1% and 99% tail. Columns (1) to (2) report results with bond
fixed effect only, while columns (3) to (5) add issuer→time fixed effect. Columns (1) and (3) use all EM European sovereign bonds
while columns (2) and (4) focus on bonds with a large investor base (larger than 15%) coverage in my data. Column (5) further add
bid-ask spread as an additional control. Standard errors are clustered at bond level. *** p<0.01, ** p<0.05, * p<0.1.
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(1) (2) (3) (4)
VARIABLES ∆ yield ∆ yield ∆ residualized yield ∆ residualized yield

∆ log VIX 0.0405*** 0.1008***
(0.0151) (0.0157)

∆ log VIX → lag bank+ICPF share -0.0010* -0.0013***
(0.0006) (0.0005)

∆ log VIX → lag fund share 0.0051*** 0.0037***
(0.0008) (0.0013)

∆ log VIX → lag bank+ICPF relative share -0.0007*** -0.0008***
(0.0002) (0.0002)

∆ log VIX → Euro 0.0131 0.0306*
(0.0147) (0.0171)

∆ log VIX → credit quality (issuance) 0.1241*** 0.0908***
(0.0268) (0.0265)

∆ log VIX → residual maturity bucket (score) -0.0049 0.0033
(0.0052) (0.0048)

Observations 30,500 30,224 17,216 17,065
R-squared 0.6802 0.6820 0.0480 0.0475
Bond FE ↭ ↭ ↭ ↭
Issuer*Time FE ↭ ↭ ↔ ↔
Controls ↭ ↭ ↭ ↭

Table I.A.8: Push-pull regressions: Robustness checks

Source: Research Data and Service Centre (RDSC) of the Deutsche Bundesbank, Securities Holdings
Statistics (SHS-Base plus), 2012M12–2021M6, own calculations.

Note: Table I.A.8 reports push-pull regressions relating month-to-month changes in bond yield to “push” (global) factors and “pull”
(local) factors according to (3). The sample runs from 2012M12 to 2021M6. Credit quality refers to Eurosystem’s Credit Quality
Step, harmonizing credit ratings into six bins. Maturity bucket is defined by separating bonds into bins according to residual
maturity shorter than 1 year, between 1 and 3 years, 3 and 5 years, 5 and 10 years, and above 10 years. Each bucket is assigned a
score from 0 to 4 with rising residual maturities. “Switch maturity bucket” takes on value 0 if the maturity bucket does not change
from the previous month, and takes on value -1 if the maturity bucket switches from the previous month. Columns (1) and (2) add
interactions between ∆log VIX index and a set of observable characteristics at the bond level, including Euro denomination, credit
quality at issuance level and residual maturity bucket. In columns (3) and (4), the sample is restricted to USD and EUR bonds, and
the dependent variableis residualized monthly changes in bond yield. The residuals are obtained from regressing monthly changes
in raw bond yields on monthly changes in a set of bond risk factors calculated from excess returns investing in long-short
portfolios. The bond risk factors include a credit risk factor and a duration risk factor. Columns (1) and (3) focus on raw measures
of investor composition associated with investment funds and banks, insurers and pension funds. Columns (2) and (4) use lagged
relative investor composition, computed as the total holding of banks and ICPFs as a share of total holding of banks, ICPFs and
mutual funds for a particular bond in my sample. Standard errors are clustered at bond level. *** p<0.01, ** p<0.05, * p<0.1.
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(1) (2) (3) (4) (5)
large share large share

VARIABLES ∆ yield ∆ yield ∆ yield ∆ yield ∆ yield

∆ log V2X 0.2870***
(0.0196)

∆ log V2X → lag bank+ICPF share -0.0092*** -0.0012** -0.0011
(0.0013) (0.0005) (0.0008)

∆ log V2X → lag fund share 0.0097*** 0.0057*** 0.0049***
(0.0016) (0.0010) (0.0011)

∆ log V2X → lag bank+ICPF rel. share -0.0005** -0.0018***
(0.0003) (0.0004)

Observations 32,743 32,918 10,432 32,642 10,432
R-squared 0.0818 0.6138 0.8003 0.6151 0.8004
Bond FE ↭ ↭ ↭ ↭ ↭
Issuer*Time FE ↔ ↭ ↭ ↭ ↭
Controls ↭ ↭ ↭ ↭ ↭

Table I.A.9: Push-pull regressions: V2X index as the proxy for global risk factors

Source: Research Data and Service Centre (RDSC) of the Deutsche Bundesbank, Securities Holdings
Statistics (SHS-Base plus), 2012M12–2021M6, own calculations.

Note: Table I.A.9 reports push-pull regressions relating month-to-month changes in bond yield to “push” (global) factors and
“pull” (local) factors according to (3). The sample runs from 2012M12 to 2021M6. Credit quality refers to Eurosystem’s Credit
Quality Step, harmonizing credit ratings into six bins. I winsorize monthly changes in bond yield at 1% and 99% tail. Maturity
bucket is defined by separating bonds into bins according to residual maturity shorter than 1 year, between 1 and 3 years, 3 and 5
years, 5 and 10 years, and above 10 years. Each bucket is assigned a score from 0 to 4 with rising residual maturities. “Switch
maturity bucket” takes on value 0 if the maturity bucket does not change from the previous month, and takes on value -1 if the
maturity bucket switches from the previous month. The regressions are augmented with measures of lagged investor composition,
including both investment fund share and total share of banks, insurance companies and pension funds. The implied volatility of
European STOXX index (V2X) is further interacted with the measure of investor composition for each sector (columns (1) to (3)), or
the measure of amount held by banks and insurance company relative to investment funds (columns (4) to (5)). Columns (1)
reports the result with bond fixed effect only, while columns (2) to (5) add issuer→time fixed effect. Columns (1), (2) and (4) use all
EM European sovereign bonds while columns (3) and (5) focus on bonds with a large investor base (larger than 15%) coverage in
my data. *** p<0.01, ** p<0.05, * p<0.1.
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(1) (2) (3) (4) (5)
FID3 FID12 GIV12 FID12 GIV12

VARIABLES EUR EUR EUR Non-EUR Non-EUR

FID3 -0.315***
(0.043)

FID12 -0.313*** -0.291***
(0.043) (0.022)

GIV12 -1.816*** -0.353***
(0.261) (0.052)

∆y10Y,t(Bund) 0.409*** 0.402*** 0.413*** 0.479*** 0.474***
(0.026) (0.026) (0.021) (0.016) (0.016)

∆ log IP -0.510*** -0.508*** -0.528*** 0.008 0.018
(0.184) (0.183) (0.183) (0.039) (0.039)

∆ Bid-ask spread 0.373*** 0.373*** 0.502*** 0.773*** 0.759***
(0.117) (0.119) (0.134) (0.070) (0.067)

Observations 6,445 6,372 7,902 24,471 25,052
First-stage F 53.86 52.03 48.58 172.2 45.35

Table I.A.10: Demand equation of banks and ICPFs: First stage for baseline estimates

Source: Research Data and Service Centre (RDSC) of the Deutsche Bundesbank, Securities Holdings
Statistics (SHS-Base plus), 2012M12–2021M6, own calculations.

Note: Table I.A.10 complements the weak-instrument-robust Lee et al. (2022) standard error reported in Table 2 by reporting results
from the first-stage regression of bond yield on flow-based instruments and control variables. The sample runs from 2012M12 to
2021M6. Month-to-month changes in bond yields is regressed on the instruments, 10-year Bund yield, log industrial production
index as well as bond characteristics (bid-ask spread winsorized at 1% and 99% tail). The instruments are either flow-induced
demand shock (FID) or granular flow shock discussed in Section 4.1. Credit quality refers to Eurosystem’s Credit Quality Step,
harmonizing credit ratings into six bins. I winsorize monthly changes in bond yield at 1% and 99% tail. Columns (1) to (3) report
estimates on the Euro-denominated bond sample, while column (4) and (5) focus on the non-EUR sample. In column (1), the
instrument is FID generated from residualizing mutual fund flow by current and lagged monthly returns for 3 months. Column (2)
and (4) use FID with mutual fund flow residualized by time fixed effect, current and lagged monthly returns for 12 months.
Column (3) and (5) use the granular flow shocks (6) with the idiosyncratic flow being the lagged fund size-weighted average of
mutual fund flow. Standard errors are clustered at bond level. *** p<0.01, ** p<0.05, * p<0.1.
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(1) (2) (3) (4)
FID3 FID12 FID3 FID12

VARIABLES EUR EUR EUR EUR

∆yt(n) 0.312** 0.326** 0.613** 0.613**
(0.146) (0.147) (0.299) (0.310)

∆y10Y,t(Bund) -0.126* -0.130**
(0.064) (0.063)

∆ log IP 0.054 0.060 -0.008 -0.007
(0.089) (0.091) (0.056) (0.057)

∆ Bid-ask spread -0.130 -0.135 -0.166 -0.161
(0.082) (0.084) (0.106) (0.107)

Lagged overall exposure to investment funds 0.003*** 0.003***
(0.001) (0.001)

Observations 6,445 6,372 6,445 6,372
Time FE - - ↭ ↭
First-stage F 53.55 51.79 23.45 21.02

Table I.A.11: Yield elasticity of demand estimation: Robustness

Source: Research Data and Service Centre (RDSC) of the Deutsche Bundesbank, Securities Holdings
Statistics (SHS-Base plus), 2012M12–2021M6, own calculations.

Note: Table I.A.11 reports additional IV estimation results. Columns (1) and (2) include one additional control in regressions
otherwise the same as the baseline estimation. The additional control – lagged overall exposure – is defined as the product of
lagged bond price and lagged share held by investment funds in my Morningstar sample. Columns (3) and (4) add time fixed effect
to the estimation. I winsorize monthly changes in bond yield at 1% and 99% tail. Standard errors are clustered at bond level. ***
p<0.01, ** p<0.05, * p<0.1.
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(1) (2) (3) (4)
VARIABLES EUR Non-EUR IG HY

∆yt(n) 0.543 -0.277 0.362 -0.198
(0.330) (0.186) (0.223) (0.183)

∆y10Y,t(Bund) -0.198* 0.137 -0.169 -0.051
(0.116) (0.148) (0.129) (0.082)

∆ log IP -0.016 -0.139 -0.147 0.014
(0.168) (0.211) (0.116) (0.200)

∆ Bid-ask spread -0.104 0.059 -0.307 -0.073
(0.112) (0.225) (0.195) (0.176)

∆ log Exchange rate against EUR -0.010 -1.059
(1.555) (0.871)

Observations 6,448 25,326 24,796 6,978

Table I.A.12: Yield elasticity of demand estimation: Accounting for zero current
holding

Source: Research Data and Service Centre (RDSC) of the Deutsche Bundesbank, Securities Holdings
Statistics (SHS-Base plus), 2012M12–2021M6, own calculations.

Note: Table I.A.12 reports demand slopes of banks, insurers and pension funds by bond types, estimating the nonlinear equation
(IA.58) via GMM taking into account zero values of Bi,t(n)/Bi,t(n ↔ 1) in the data. I winsorize monthly changes in bond yield at 1%
and 99% tail, and ratio between month t and month t ↔ 1 holding at 99% tail. The sample runs from 2012M12 to 2021M6. Bond
yield is instrumented using flow-induced demand shock with 3 lags of fund returns used to residualize bond flows. Credit quality
refers to Eurosystem’s Credit Quality Step, harmonizing credit ratings into six bins. Monthly changes in bond yield are winsorized
at 1% and 99% tail. Weighting matrix clustered at the bond level is used to compute standard errors. *** p<0.01, ** p<0.05, * p<0.1.
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Figure I.A.2: EM-focused mutual fund flow during global “risk-off” episodes
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I.B Model appendix

I.B.1 Model derivation and proofs

Equilibrium definition and main proposition The definition of Markov equilibrium
follows from usual optimization and market clearing:

Definition 1. A Markov equilibrium consists of a bond price function P(λ, W), and associated

demands X(λ, W), Z(λ, W) such that

• Asset managers make optimal portfolio choices given P.

• Long-term investors’ demand follows (10).

• The market for the risky perpetuity clears: X(λ, W) + Z(λ, W) = s.

I state the partial differential equation (PDE) characterizing the equilibrium bond
price P(λ, W) in the model.

Proposition 1. The equilibrium bond price P(λ, W) solves the following PDE:

rP =κ + λ · Φ4

χ(1 + Φ4)
+ Pλ[κλ(λ ↔ λ)↔ σλ

≃
λΦ2] + PW [Φ1 ↔ (Φ2

2 + Φ2
3)]W

+
1
2

Pλλσ2
λλ +

1
2

PλWσλ

≃
λΦ2W +

1
2

PWWW
2(Φ2

2 + Φ2
3).

(IA.20)

where χ ↓ X/W is the asset manager position on the risky bond normalized by wealth, subject

to the boundary conditions

Pλ(λmin, W) = Pλ(λmax, W) = 0, W ↑ (0, ∞), (IA.21)

P(λ, 0) = F(λ) · exp
(

s + θ1λ

↔α(λ)

)
, λ ↑ (λmin, λmax), (IA.22)

lim
W↘∞

P(λ, W) = F(λ), λ ↑ (λmin, λmax). (IA.23)

The associated quantities Φ1, Φ2, Φ3, Φ4 are functions of the states and follow Equation

(IA.41), (IA.42), (IA.43) and (IA.40) in Appendix I.B.1.

Portfolio choice I first derive the Hamilton-Jacobi-Bellman (HJB) equation associated
with the asset manager’s optimal portfolio choice problem. The evolution of asset man-
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ager wealth given the conjecture (12) is

dwt

wt

=
(

r + ξ ↔ ct

wt

+ χt(ωt + κ ↔ rPt)
)

dt + χtηλ,tdBλ,t + (χtηz,t + σz)dBz,t + χt(ηN,t ↔ δ)dNt

(IA.24)

where I define χt = xt/wt. Use vt as the shorthand for the value function v(λt, wt, Wt).
The associated HJB equation is

(ρ + ζ)vt =ωtvW,t +
1
2
(Φ2

2,t + Φ2
3,t)W

2
t vWW,t + σλΦ2,tWt

√
λtvλW,t

+ κλ(λ ↔ λt)vλ,t +
1
2

σ2
λλtvλλ,t + λt

[
V(λt, wt, Wt(1 + Φ4,t))↔ vt

]

+ max
ct,χt

{
log ct +

[
(r ↔ ct

wt

+ ζ) + χ(wt + κ ↔ rPt)
]
wtvw,t

+
1
2

[
χ2

t η2
λ,t + (χtηz,t + σz)

2
]
w

2
t vww,t + (χtηz,t + σz)wtΦ3,tWtvwW,t

+ (χtηλ,twt) ·
[
σλ

√
λtvwλ,t + Φ2,tWtvwW,t

]

+ λt

[
V(λt, wt(1 + χt(ηN,t ↔ δ)), Wt(1 + Φ4,t))↔ vt

]}
.

(IA.25)

where we use vx,t and vxy,t to denote the first-order and second-order partial derivatives
of vt with respect to an arbitrary x or y. No expectation sign appears in the final term of
the HJB equation that captures the value function jumps after default shock arrival, as
the distribution of the jump size associated with Nt is degenerate (equal to δ).

Given log utility, I guess and verify that the value function takes the functional form
v = V(λ, w, W) = (ρ + ξ)↔1 · (log w + g(λ, W)) for some function g that depends on λ

and aggregate wealth W only. Dropping the time subscript for simplicity, the first-order
conditions associated with the HJB equations are

[c] : c = (ρ + ξ)w (IA.26)

[χ] : ω + κ ↔ rP + λ
ηN ↔ δ

1 + χ(ηN ↔ δ)
= (χηz + σz)ηz + χη2

λ. (IA.27)

From (IA.27), the optimal χ does not depend directly on asset manager wealth. Plug
in the functional form guess and (IA.27) into (IA.25) and (IA.26), and canceling log w

on both sides, the functional form guess is verified as both sides of the PDE do not
directly depend on w. Aggregation implies that χ is also the aggregate asset manager
normalized position, X/W. The aggregate equivalent of (IA.24) is
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dWt

Wt

= (r ↔ ρ + χt(ωt + κ ↔ rPt))dt + ξ
(

W

Wt

↔ 1
)

dt + χtηλ,tdBλ,t + (χtηz,t + σz)dBz,t + χt(ηN,t ↔ δ)dNt.

(IA.28)

Given the conjecture for the law of motion of aggregate wealth Wt in (13), as we are
looking for a Markov equilibrium P(λ, W), we can apply Itô’s lemma for jump-diffusions
to obtain

dPt =
[

Pλ,t[κλ(λ ↔ λt)] + PW,tΦ1,tWt +
1
2

Pλλ,tσ
2
λλt +

1
2

PWW,t(Φ2
2,t + Φ2

3,t)W
2
t + PλW,tΦ2,tWσλ

√
λt

]
dt

+ [Pλ,tσλ

√
λt + PW,tΦ2,tWt]dBλ,t + PW,tΦ3,tWtdBz,t + [P(λ, W(1 + Φ4,t))↔ P(λ, W)]dNt.

Matching coefficient with the conjectured form for Pt (12), we have

ωt = Pλ,t[κλ(λ ↔ λt)] + PW,tΦ1,tWt +
1
2

Pλλ,tσ
2
λλt +

1
2

PWW,t(Φ2
2,t + Φ2

3,t) + PλW,tΦ2,tWσλ

√
λt

(IA.29)

ηλ,t = Pλ,tσλ

√
λt + PW,tΦ2,tWt (IA.30)

ηz,t = PWΦ3,tWt (IA.31)

ηN,t = P(λ, W(1 + Φ4,t))↔ P(λ, W). (IA.32)

Matching coefficients between (13) and (IA.28), I get

Φ1,t = r ↔ (ρ + ξ) + χt(ωt + κ ↔ rPt) + ξ
W

Wt

(IA.33)

Φ2,t = χtηλ,t (IA.34)

Φ3,t = χtηz,t + σz (IA.35)

Φ4,t = χt(ηN,t ↔ δ). (IA.36)

Combining (IA.29)–(IA.32) and (IA.33)–(IA.36), the Φ functions can be rewritten as

Φ1,t =r ↔ (ρ + ξ) + ξ
W

Wt

+ χ(κ ↔ rPt)

+ χ ·
[

Pλ,t[κλ(λ ↔ λt)] + PW,tΦ1,tWt +
1
2

Pλλ,tσ
2
λλt +

1
2

PWW,t(Φ2
2,t + Φ2

3,t) + PλW,tΦ2,tWσλ

√
λt

]

(IA.37)
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Φ2,t = χt[Pλ,tσλ

√
λt + PW,tΦ2,tWt] (IA.38)

Φ3,t = χtPWΦ3,tWt + σz (IA.39)

Φ4,t = χt[P(λ, W(1 + Φ4,t))↔ P(λ, W)↔ δ] (IA.40)

and Φ1,t, Φ2,t, Φ3,t can be further simplified to

Φ1,t =
r ↔ (ρ + ξ) + ξ W

Wt
+ χ(κ ↔ rPt) + χ ·

[
Pλ,t[κλ(λ ↔ λt)] + 1

2 Pλλ,tσ
2
λλt + 1

2 PWW,t(Φ2
2,t + Φ2

3,t) + PλW,tΦ2,tWσλ
≃

λt

]

1 ↔ χtPW,tWt

(IA.41)

Φ2,t =
χtPλ,tσλ

≃
λt

1 ↔ χtPW,tWt

(IA.42)

Φ3,t =
σz

1 ↔ χtPW,tWt

. (IA.43)

Proof of Proposition 1 Combine the first-order condition (IA.27) with (IA.30), (IA.31),
(IA.34), (IA.35), (IA.36), we have

rP = ω + κ + λ
Φ4

χ(1 + Φ4)
↔ Φ2 · (Pλσλ

≃
λ + PWΦ2W)↔ Φ3 · PWΦ3W,

and the PDE (IA.20) follows from (IA.29) and rearranging terms.

I.B.2 Asset demand of long-term investors: An optimizing foundation

This section sketches a stylized optimization problem to motivate the long-term in-
vestors’ demand structure (11) and the interpretation of the counterfactual exercise dis-
cussed in Section 6.

Risk-neutral return I first introduce the risk-neutral excess return process dQF,t as-
sociated with the fundamental value Ft of the risky perpetuity, following Xiong (2001).
This will be useful to motivate the credit constraint (IA.47). dQF,t is given by the hypo-
thetical mark-to-market profits of holding one unit of the risky perpetuity fully levered,
collecting coupon payment each period subject to face value haircut:

dQF,t = dFt + (κdt ↔ δλtdt)↔ rFtdt. (IA.44)
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Abstracting from the reflecting boundary, the property of the CIR process (7) and the
definition of Ft (8) implies that Ft is given by

Ft =
κ ↔ δλ

r
+

δ(λ ↔ λt)
r + κλ

,

so that dQF,t has no drift term:

dQF,t = ↔ δ

r + κλ
dλt + κdt ↔ δλtdt ↔

(
κ ↔ δλ +

δr

r + κλ
(λ ↔ λt)

)
dt

= ↔ δ

r + κλ
[κλ(λ ↔ λt)dt + σλ

√
λtdBλ,t] + δ(λ ↔ λ)dt ↔ δr

r + κλ
(λ ↔ λt)dt

= ↔ δσλ

r + κλ

√
λtdBλ,t.

(IA.45)

The variance of the excess return process, denoted σ2
F,t, is proportional to λt, the

default intensity.

Setup Consider an atomistic agent out of a unit mass of identical long-term investors.
The agent, indexed by i, chooses its position of the risky perpetuity each period by
solving a static problem, given each period’s realization of default risk, λt:

max
Zi,t

Vi,t = (F(λt)↔ Pt)Zi,t ↔ Et[c(λt)dNt]PtZi,t (IA.46)

s.t.Vi,t ⇐ Γ|Zi,t|︸ ︷︷ ︸
Divertible portion

→ |PtZi,t|︸ ︷︷ ︸
Value of claims

. (IA.47)

(IA.46) is the value function of the long-term investor, who compares the price of the
risky perpetuity against the fundamental value of the bond obtained by purchasing the
bond at time t and holding the bond forever (see (8)). In addition, the long-term investor
needs to set provision against default, occurring in the next instant with probability λt.
For each dollar of the market value of risky asset holdings, default provisions cost c(λt).
I assume c(·) is sufficiently small to guarantee Vi,t ⇐ 0.

I assume that long-term investors are subject to a credit constraint in the form of
(IA.47). The constraint is motivated by a contracting problem, in which the long-term
investor each period can divert a fraction of the risky asset position and sell them at
market value. I assume that the ultimate investors can only recover a portion 1 ↔ Γ|Zt|
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of their position |Zt|. Ultimate investors rationally anticipate this incentive for diversion
and imposes the constraint (IA.47).

Similar to Gabaix and Maggiori (2015), I assume Γ takes the following form:

Γ = ε f (σ2
F,t) (IA.48)

for some positive function f satisfying f
↗(·) ⇐ 0 and ε > 0.42 As in Gabaix and Maggiori

(2015), risk taking of the investors are limited by both the size of the position and by the
expected riskiness measured by the variance. The relevant variance for these investors is
σ2

F,t, the variance associated with the risk-neutral excess return. The constraint becomes
looser when σ2

F,t decreases. By (IA.45), σ2
F,t ∝ λt, so we can also write Γ explicitly as a

function of the default intensity, Γ(λt).

Discussion The problem of the long-term investors is motivated by the discussion in
the main text on the institutional features of banks and ICPFs. Due to the structure of
its liability (stable retail deposits with long duration) and regulatory treatment of assets
(held-to-maturity accounting), long-term investors care about risk through its relation-
ship with the long-term, stable income flow generated by their asset holdings. This is
captured by the dependence of the optimization problem on the deviation of the cur-
rent price from the fundamental value of the asset. The focus on the fundamental value
of the asset also suggests that long-term investors can ride out transient fluctuations in
the market value of the risky perpetuity (especially those driven by non-fundamental
shocks) and provide liquidity when asset prices drop (Hanson et al., 2015; Chodorow-
Reich et al., 2020).43

Providing liquidity is not without cost, however. Long-term investors may be partic-
ularly sensitive to the prospect of default, as the associated book equity loss from default
tightens the regulatory constraint based on book values, and needs to be compensated
by costly equity raising (Hanson et al., 2015; Morelli et al., 2022). In the sovereign debt
context, costly equity financing results in the incentive of banks to rely on maturity ex-
tension for restructuring and the disincentive to classify investment to emerging markets
as impaired (Guttentag and Herring, 1989; Rieffel, 2003; Dvorkin et al., 2021). The default
provision term in (IA.46) reflects these considerations.

42In Gabaix and Maggiori (2015), Γ = ε(σ2
e,t)

α where σ2
e,t is the variance of the next-period exchange

rate.
43As an alternative motivation for (11), (IA.46) reflects the potential inability of long-term investors

with maxmin preferences to adjust portfolio every period (Xiong, 2001).
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The credit constraint (IA.47) represents regulatory or risk-manager concern that limit
the risky asset position of long-term investors. For instance, Basel III and Solvency II
compute capital requirement based on the riskiness of the underlying holding, captured
by the volatility proportional to λt. The function f in (IA.48) can be defined flexibly
to reflect varying degrees of constraints that affect the relationship between demand
elasticity and default risk. A convex f is consistent with a Value-at-Risk constraint
(Danielsson et al., 2012). A linear f replicates the usual demand slope associated with
a mean-variance investor. The case f

↗ = 0 (a constant Γ) corresponds to the assump-
tion of a constant demand slope typically associated with preferred-habitat investors
(Vayanos and Vila, 2021; Costain et al., 2022). This case is analyzed in the “no selection”
counterfactual scenario in Section 6.

Asset demand To arrive at (11), I observe that risk-neutrality of the long-term investor
implies (IA.47) always binds. As a result, optimal risky asset position for each long-term
investor is given by

Zi,t =
1

Γ(λt)
· F(λt)↔ Pt

Pt

↔ c(λt)
Γ(λt)

· λt. (IA.49)

(11) is obtained by making the approximation log(1 + x) ⇒ x on x = (F ↔ P)/P,
setting Γ(λt) = α↔1 · exp(δλt), c(λt) = θ1Γ(λt), and aggregating across the entire unit
mass of long-term investors.

Mapping to the counterfactuals Two counterfactual scenarios analyzed in Section 6
map directly to the optimizing foundation in this section. Long-term investors exhibit
an explicit aversion to default risk due to costly equity issuance and risk-based credit
constraint. Removing the aversion of these investors through each of the two channels
amounts to setting c(λ) = 0 or Γ(λ) to a scalar. The model assumes that all long-term
investors are identical. Scaling down the slope coefficients with respect to log(Pt/F(λt))

and λt by an equal proportion corresponds to reducing the mass of long-term investors.

Scenario “larger supply” (see Table 5) can also be mapped to this framework un-
der a different interpretation. Slightly modifying the problem (IA.46) to incorporate an
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additional term:

max
Zi,t

Vi,t = (F(λt)↔ Pt)Zi,t ↔ θ(λt)PtZi,t ↔ Et[c(λt)dNt]PtZi,t

where θ(λt) > 0. Intuitively, long-term investors are not natural holders of the risky
perpetuity, as the investors would only get one unit of the risky asset per 1 + θ(λ) units
bought. Assume θ(λ)/Γ(λ) = s for some scalar s < 0, a more negative s correspond to
a strong overall aversion to risky assets.

I.B.3 Details on calibration

Parameters externally set/estimated I calibrate the default risk process guided by the
literature. Default in my model should be interpreted as including both preemptive and
post-default restructuring episodes that may involve face value haircuts to the investors.
Among the parameters, the long-run average default intensity is set at 0.038, higher
than the 2 percent annual outright default probability typically used in the literature,
but consistent with the estimates of Arteta and Hale (2008) incorporating restructuring
events.44 The bond supply parameter s is set to 0.49, matching an average value of 49%
GDP from IMF Global Debt Database for central governments across countries in my
empirical sample.

Asset managers in my model are analogous to investment funds in my empirical
analysis. I set the exogenous liquidation intensity ξ at 4.1% per year. This number is
within the range of the average life span of global bond funds (23–25 years, see Maqui
et al. (2019)).45 I set the standard deviation of wealth shock (dBz,t) to 0.214, matching a
monthly flow volatility of 6.18% AUM in my Morningstar data for mutual funds.46

More on setting δ In my model, the parameter δ can be interpreted as the fraction of
debt permanently not paying off. Equation (18) summarizes the relationship between

44As the default risk process is reflecting at both boundaries, I set the value of λmin and λmax to 0.005
and 0.25, respectively. The upper bound is a large number compared to the standard deviation implied
by the stationary distribution. I check that the boundary values do not affect my results quantitatively.

45I assume that liquidated funds are reborn with an exogenous initial wealth level of 0.005.
46Rakowski (2010) estimates a daily fund flow volatility of 4% TNA. My assumption that the shock

processes are mutually independent attributes the variations in dBz,t to fluctuations not directly related to
local fundamentals. Sarno et al. (2016) show that more than 80% of portfolio flow variation is driven by
external factors. I therefore use the overall variation of mutual fund flow to calibrate σz.
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δ, coupon rate, haircut, and long-run average default probability. The inclusion of a
haircut fraction is due to the fact that part of the debt in arrear will be restructured
rather than permanently lost. I calibrate δ based on the methodology of Arellano et al.
(2023) (henceforth AMR) in accounting for partial defaults in emerging market sovereign
debt. In particular, I follow AMR and use data on arrears and external debt service from
World Bank International Debt Statistics. The data covers 37 countries, with a maximum
sample span from 1970 to 2021.47 For these countries, I follow AMR and compute the
fraction of long-term debt (including principals and interest payments) in default in a
particular year, conditional on having arrears:48

Partial defaultit =
Principal and interest in arrear

it

Principal and interest in arrear
it
+ Total debt serviceit

.

For haircuts due to restructuring, I use the 37% estimate from Meyer et al. (2022),
based on a sample of 23 recent bond restructurings since 1998. As a comparison, average
haircuts including bank debt default is 39% (Meyer et al., 2022); average haircuts using
a longer historical sample and weighted by amount restructured is 38%. Cruces and
Trebesch (2013) also estimate a 38% haircut.

Parameters internally calibrated The remaining five parameters on the default risk
process and long-term investors’ demand are estimated to match five moments between
simulated and actual data. The parameters include the persistence and variance param-
eters of the default risk process, κλ and σλ, the default risk aversion parameter θ1 and
demand progressivity parameter δλ, as well as the overall demand slope α of long-term
investors. I set the parameter values to match the following moments: a foreign mutual
fund share of 17% (estimated from a combination of CPIS and ECB SHS data), an aver-
age bond yield spread of 3.6%, and an average yield volatility of 0.6% (both are based
on EMBI Global data from 2013 to 2022). The model matches a correlation between de-
fault risk and bond yield of 0.4 to reflect the moderate comovement between country

47The countries include Albania, Argentina, Armenia, Azerbaijan, Bulgaria, Bosnia and Herzegov-
ina, Belarus, Brazil, China, Colombia, Costa Rica, Dominican Republic, Egypt, Georgia, Indonesia, India,
Jamaica, Kazakhstan, Lebanon, Sri Lanka, Morocco, Moldova, Mexico, North Macedonia, Montenegro,
Pakistan, Peru, Philippines, Russian Federation, Serbia, Thailand, Tajikistan, Turkey, Ukraine, Uzbekistan,
Vietnam, and South Africa.

48The corresponding tickers are DT.IXA.DLXF.CD (interest in arrear), DT.AXA.DLXF.CD (principal in
arrear), and DT.TDS.DPPG.CD (debt service). Note that the debt concept here refers to all public and
publically-guaranteed debt (PPG).
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fundamentals and sovereign spreads observed in the data (Aguiar et al., 2016).49

More on the yield elasticity target I target a weighted average elasticity of 21 in my
baseline calibration. This number is obtained step-by-step, using data on holding of
Slovak long-term government securities by sector as of 2021Q2 (ECB SHSS), my estimate
of foreign long-term investors’ demand elasticity (Table 2), and the estimates by Fang
et al. (2022) using a global demand system.50

1. As a first step, I combine SHSS data and the Fang et al. (2022) estimates to get the
demand elasticity of domestic investors. I ignore central bank holdings throughout.
As of 2021Q2, out of all domestic holding, banks account for 81% while non-banks
account for 19%. ICPFs account for the bulk of domestic non-bank holding. Given
a demand elasticity of 10.46 for domestic banks and 14.89 of domestic non-banks
estimated by Fang et al. (2022) for an average emerging market economy, I calculate
the domestic weighted average yield elasticity at 11.3.

2. Using a similar approach, I calculate a foreign weighted average elasticity of 33.0.
In the data, foreign banks account for 39% of the private foreign holdings of Slovak
government bond. Demand elasticity estimates of Fang et al. (2022) are 29.05 for
banks and 35.45 for non-banks, respectively. As a result, domestic yield elasticity
of demand is roughly one-third of its foreign counterpart.51

3. The final step is to compute a weighted average demand elasticity for the long-term
investors in my model. Using my estimate of foreign yield elasticity of demand at
29.4, the domestic demand elasticity is around 10 when scaled by the result from
Step 2. Of total bank and ICPF holding, domestic institutions account for 43%. The
weighted average demand elasticity is 21.08.

To get the model counterpart to the demand (semi-)elasticity, I estimate (19) on the
simulated data. The target should match 100 → β0.

49The yield of the risky perpetuity, y, is defined as the constant interest rate associated with a perpetual
bond that promises a coupon κ and is priced at P, such that Pt =

∫ ∞
t

e
↔ytκdt. The yield spread is obtained

by subtracting the risk-free rate r from y.
50The SHSS data, available since 2021, can be found at https://sdw.ecb.europa.eu/browse.do?node=

9691594. In particular, I use face value (F) of total (U2) and domestic holding (SK) of long-term debt (L)
issued by the general government sector.

51The underlying assumption is that domestic and foreign holding have the same average residual
maturity.
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I.B.4 Computation algorithm

The equilibrium of my quantitative model is a solution to the fully nonlinear partial
differential equation (IA.50). I extend the finite difference scheme to solve this PDE.

The entire algorithm consists of four main blocks:

Transformation The state variable W takes value in the interval [0, ∞). Therefore,
I follow Xiong (2001) to make the following monotonic transformation. Define Y =

Y(W) = W↔ϑ
W+ϑ , where ϑ is a scaling parameter (set to 1.5 in my computation). Then

Y(0) = ↔1, limW↘∞ Y(W) = 1, so that Y resides in the interval [↔1, 1). Accordingly, we
have W = ϑ 1+Y

1↔Y
and

∂

∂W
=

(1 ↔ Y)2

2ϑ

∂

∂Y

∂2

∂2W
=

(1 ↔ Y)4

4ϑ2
∂2

∂2Y
↔ (1 ↔ Y)3

2ϑ

∂

∂Y
,

and

∂

∂W
· W =

(1 + Y)(1 ↔ Y)
2

· ∂

∂Y
.

The transformed partial differential equation is

rP =κ + λ · Φ4

χ(1 + Φ4)
+ Pλ[κλ(λ ↔ λ)↔ σλ

≃
λΦ2] +

1
2
(1 + Y)(1 ↔ Y)PY

[
Φ1 ↔

(1 + Y

2
+ 1

)
(Φ2

2 + Φ2
3)
]

+
1
2

Pλλσ2
λλ +

1
2
(1 + Y)(1 ↔ Y)PλYσλ

≃
λΦ2 +

1
2

PYY

(1
2
(1 + Y)(1 ↔ Y)

)2
(Φ2

2 + Φ2
3).

(IA.50)
where

Φ1 =
r ↔ ρ + ξ

(
W

ϑ 1+Y

1↔Y

↔ 1
)
+ χ(κ ↔ rP) + χ ·

[
Pλ[κλ(λ ↔ λ)] + 1

2 Pλλσ2
λλ + (1↔Y)(1+Y)

2 PλY

≃
λσλΦ2 +

1
2 PYY ·

(
(1↔Y)(1+Y)

2

)2
(Φ2

2 + Φ2
3)
]

1 ↔ χ (1+Y)(1↔Y)
2 PY

and

Φ2 =
χPλ

≃
λσλ

1 ↔ χ (1+Y)(1↔Y)
2 PY

Φ3 =
σz

1 ↔ χ (1+Y)(1↔Y)
2 PY

Φ4 = χ[P(W(Y) · (1 + Φ4))↔ P(W(Y))↔ δ].

Initialization Obtaining an appropriate initial guess is crucial for the convergence of
my time-iteration (pseudo time-transient) procedure. I initialize my guess P

(0)(λ, Y) by
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solving a simplified problem, where the default risk λ is no longer time-varying. In
this case, the problem becomes a one-dimensional PDE for each point on the λ-grid.
As λ becomes non-stochastic in the simplified problem, F(λ) may differ from those in
the baseline model. I make sure the initial guess has boundary values P

(0)(λ, Ymin) and
P
(0)(λ, Ymax) that correspond to the baseline values, by adjusting the parameter value of

coupon rate κ accordingly in the simplified problem.

In the initialization phase, I also compute the fundamental value of the risky perpe-
tuity F(λ) for each λ on the grid used to solve the PDE in the next step. The calculation
of conditional expectation E[λs | λt = λ] is complicated by the existence of reflecting
barriers for the process (7), as no analytical expressions are available. I calculate the
conditional expectation numerically by solving an associated Kolmogorov backward equa-

tion, explicitly incorporating the boundary conditions. Formally, the generator of the CIR
process (7) without reflecting barriers is defined as the operator L that satisfies

(L f )(λ) = κλ(λ ↔ λ) · f
↗(λ) +

1
2

σ2
λλ · f

↗↗(λ)

for a function f ↑ C
2(R). For Markov processes Xt, the transition density, p(x, t | y, s), is

such that

P(Xt ↑ A | Xs = y) =
∫

A

p(x, t | y, s)dx.

The conditional expectation of function f (X), u(y, s), is defined as

u(y, s) := Ey,s
f (Xt) =

∫
f (x)p(x, t | y, s)dx.

Setting f (λ) = λ, the conditional expectation of CIR process (7) with reflecting barri-
ers further satisfies the backward equation:52

∂tu = L u, u(λ, 0) = λ, ∂λu |λ↑{λmin,λmax}= 0 (IA.51)

which can be solved forward starting from the initial condition u(λ, 0) = λ using stan-
dard finite difference method.

52Time goes forward in this “backward equation” because of time-homogeneity of CIR processes. See
Holmes-Cerfon (2019) for an overview of incorporating boundary conditions into forward and backward
equations.
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For each λ, the procedure yields a vector u(λ, s) from time 0 to a large truncation
point T, where I set T = 500. For a large t, the transition density well approximates the
stationary distribution. I compute F(λ) by discretizing the integral in (8) and splitting the
integral into two parts. For t < T, I compute the integral using u. For t ⇐ T, I compute
the integral using the unconditional expectation based on the stationary distribution.

Solving the nonlinear PDE To solve the PDE (IA.50), I combine the finite-difference
method with a time-relaxation algorithm, by adding a pseudo time transient ∂tP and
iterate from the initial guess until convergence. The solution is divided into an outer
loop, where given a candidate price function P

(n) at iteration n, I compute its associated
derivatives and back out other equilibrium quantities, and an inner loop, where given
the equilibrium quantities, I solve for a new price function P

(n+1). The algorithm stops
when P

(n+1) is sufficiently close to P
(n). More specifically, I declare convergence when

|P(n+1)↔P
(n)|

∆t
< 10↔4, where ∆t is the time step chosen in the finite difference procedure.

In practice, ∆t is to the order of 0.05.

For derivatives at the boundaries and corners, I follow Hansen et al. (2018) and fill
the entries with the derivatives next to them away from boundaries and corners.

With the derivatives, I update the functions Φ(n+1)
1 , Φ(n+1)

2 , Φ(n+1)
3 , Φ(n+1)

4 using Equa-
tions (IA.41), (IA.42), (IA.43) , (IA.40). In particular, for the update of Φ4, I compute
P(λ, W(1 + Φ4)) via linear interpolation for each λi with interpolant Wj(1 + Φ(n)

4,i,j), i.e.,
using Φ4,i,j from the previous iteration.

Simulation The algorithm obtains a solution P(λ, W) in the previous step, along with
its associated partial derivatives. With these objects, I simulate Brownian and Poisson
shocks, use discretization schemes to trace the evolution of the wealth process and the
default risk process (starting from some arbitrary initial wealth and default risk), and
back out the bond prices. For each simulation n, I choose the length of the series T and
a step size ∆t = 1/12 to generate a time grid T = {t0 = 0, t1 = 1/12, . . . , ti, ti+1, . . . , T}.
I drop the first one-fourth of the simulated series as burn-ins. In the counterfactual
analyses, I hold the simulated exogenous shocks constant to make sure sampling differ-
ences are not driving the differences across specifications. I simulate λt using the strong
convergence scheme of Alfonsi (2005). I simulate the default process using Çinlar’s in-
version method (Çinlar, 1975). For the log wealth process, I use the Euler-Maruyama
scheme.
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